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Abstract

Remote sensing change detection (RSCD) aims to identify surface changes from co-registered bi-temporal images. However,
many deep learning–based RSCD methods rely solely on change-map annotations and underuse the semantic information in non-
changing regions, which limits robustness under illumination variation, off-nadir views, and scarce labels. This article introduces
ChangeDINO, an end-to-end multiscale Siamese framework for optical building change detection. The model fuses a lightweight
backbone stream with features transferred from a frozen DINOv3, yielding semantic- and context-rich pyramids even on small
datasets. A spatial–spectral differential transformer decoder then exploits multi-scale absolute differences as change priors to
highlight true building changes and suppress irrelevant responses. Finally, a learnable morphology module refines the upsampled
logits to recover clean boundaries. Experiments on four public benchmarks show that ChangeDINO consistently outperforms
recent state-of-the-art methods in IoU and F1, and ablation studies confirm the effectiveness of each component. The source code
is available at https://github.com/chingheng0808/ChangeDINO.

1. Introduction

Remote sensing change detection (RSCD) in multi-temporal
remote sensing imagery is central to Earth observation. By
comparing satellite or aerial images across time, RSCD reveals
land-cover dynamics from natural and human activities (Singh,
1989, Asokan and Anitha, 2019). Buildings are an important
focus area because changes inform urban planning, regulatory
compliance, and risk assessment. With high-resolution aerial,
drone , and satellite imagery, deep learning enables large-scale
monitoring, detection of subtle structural changes, and data-
driven support for infrastructure management and sustainable
development (Peng et al., 2025).

RSCD remains challenging due to cross-temporal and cross-
domain variability. Image pairs may come from different
sensors such as optical, multispectral, or SAR, or they may
differ in illumination, seasonality, and viewing geometry even
within one modality (Chen et al., 2024b). These factors in-
troduce spectral and geometric inconsistencies unrelated to true
changes (Hussain et al., 2013). Traditional hand-crafted meth-
ods struggle with such variability, while deep learning has be-
come the prevailing approach by learning hierarchical, task-
specific representations with stronger robustness and general-
ization (Daudt et al., 2018).

However, current models face limited data scale and architec-
tural constraints. Many RSCD datasets are small, geograph-
ically narrow, or task-specific labeled, encouraging overfitting
and limiting access to global semantic context (Ding et al.,
2025). Mainstream Siamese pipelines (Daudt et al., 2018) fuse
multiscale features with convolutional or transformer decoders,
yet often miss fine pixel-level differences and are influenced by
irrelevant context. Downsampling for efficiency and later up-
sampling also blurs boundaries.

To address these challenges, we propose ChangeDINO, a
multiscale Siamese framework. It leverages the pretrained
DINOv3 foundation model as the encoder, introduces a dif-
ferential transformer–based decoder, originally proposed in the
large-language-model domain (Ye et al., 2024), to reason over
cross-temporal context and suppress noise, and adopts a learn-
able morphological module for final mask refinement. The
main contributions of ChangeDINO include:

• Leverage DINOv3 pretrained in the encoder to inject se-
mantically rich features without requiring task-specific se-
mantic labels.

• Propose a differential transformer–based decoder that
strengthens attention to relevant cross-temporal context
for precise, pixel-level change modeling while suppress-
ing distractors.

• Introduce a learnable, morphology-based refinement head
with trainable structuring kernels that denoise predictions
and sharpen subtle-change boundaries in end-to-end train-
ing.

2. Related Works

2.1 Conventional Methods

Classical RSCD operates on bi-temporal imagery with pixel-
wise algebra or statistics (Chen et al., 2024b, Asokan and
Anitha, 2019), including image differencing and ratio-based
transforms that highlight radiometric shifts but require care-
ful thresholds and are sensitive to illumination and registra-
tion (Coppin and Bauer, 1996, Lu et al., 2004, Stow et al.,
1990). To move beyond raw pixels, feature transformations
nonlinearly project data to better separate changes (Liu et
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Figure 1. Overall architecture of ChangeDINO. The model adopts a classic multi-scale encoder–decoder and is trained end-to-end
for optical building change detection. Please zoom-in for details.

al., 2017, Jimenez-Sierra et al., 2022). Representative tech-
niques include Change Vector Analysis (CVA), which aggreg-
ates multi-band distances (He et al., 2014), and PCA-like trans-
forms that emphasize change-related variance but are scene-
dependent and often yield binary, non-semantic maps (Ce-
lik, 2009). Alternatively, post-classification comparison (PCC)
classifies each date and then compares the maps to produce a
class-to-class change matrix, at the risk of propagating classi-
fication errors (Qi et al., 2015). To improve spatial consist-
ency, OBIA segments images into geo-objects prior to com-
parison (Johansen et al., 2010), and morphological operators
are widely used as post-processing to denoise and regularize
boundaries (Dalla Mura et al., 2008).

2.2 Deep Learning-Based Methods

Deep learning reframed RSCD as a supervised segmenta-
tion task on image pairs. Early CNNs introduced end-to-end
pipelines: FC-EF concatenates bi-temporal inputs for early fu-
sion, whereas FC-Siam preserves two streams and fuses fea-
tures later (Daudt et al., 2018). Building on this paradigm,
subsequent Siamese designs improved multi-scale alignment
and locality, for example SNUNet-CD (Fang et al., 2021) with
nested dense skips and IFNet (Zhang et al., 2020) with en-
riched fusion. Broadly, two families now dominate: difference-
based methods that inject explicit image or feature differences
to guide attention toward changes (Li et al., 2023, Wang et
al., 2023), and fusion-based methods that concatenate or attend
across scales and times to learn discriminative joint representa-
tions (Han et al., 2023, Zhang et al., 2024).

To better capture long-range dependencies, transformer archi-
tectures further advance global context modeling. BIT (Chen
et al., 2021) couples CNN features with a transformer encoder
over bi-temporal tokens, and ChangeFormer (Bandara and Pa-
tel, 2022) employs hierarchical vision transformers with light-
weight decoders, improving cross-temporal interaction over
CNN baselines. Recent works also explore the role of data
scale and priors: foundation-model approaches such as Change-
CLIP (Dong et al., 2024) adapt vision-language pretraining to

emphasize semantic relevance and reduce sensitivity to sea-
sonal or illumination shifts. In parallel, state-space models
(SSMs) offer linear-time global modeling, with Mamba-based
RSCD variants reporting transformer-level accuracy and im-
proved efficiency via selective scanning (Zhang et al., 2025,
Chen et al., 2024a). Furthermore, self-supervised meth-
ods (Lebedev et al., 2018, Cheng et al., 2024, Niu et al., 2018)
employ domain-adaptation to reduce shifts across sensors and
seasons, while GAN-based augmentation (Knyaz et al., 2024)
synthesizes realistic change samples to improve overall RSCD
performance.

Overall, the literature has progressed from thresholded pixel al-
gebra to context-aware neural architectures that fuse multi-scale
features and model long-range relations. Yet open issues persist
in cross-domain generalization, fine-grained boundary fidelity,
and data efficiency (Peng et al., 2025, Ding et al., 2025), motiv-
ating methods that combine strong priors from large-scale pre-
training with architectures tailored for precise differential reas-
oning and morphology-aware refinement.

3. Methodology

3.1 Method Overview

As illustrated in Fig. 1, our pipeline takes a pair of cross-
temporal optical images and processes them with a Siamese
encoder, which combines the pretrained DINOv3 and a light-
weight backbone with a Feature Pyramid Network (FPN). The
encoder yields a multi-scale feature pyramid that is semantic-
ally rich and relatively domain-agnostic, emphasizing building
structures while remaining robust to illumination and seasonal
variation.

From the two pyramids, we construct a multi-scale change prior
by taking absolute differences at each resolution as change pri-
ors. This multi-scale prior features are fed into a cascade-style
Differential Transformer–based decoder that combines spatial
and spectral-wise (channel) self-attention. The decoder fo-
cuses on truly changed regions and suppresses distractors. At



each scale, fully convolution heads produce auxiliary predic-
tion maps to stabilize optimization and guide progressive re-
finement.

Finally, a learnable, morphology-based refinement head per-
forms shape-preserving refinement on the last auxiliary predic-
tion logit, improving boundary sharpness and object connectiv-
ity to produce final prediction. The entire network is trained
end-to-end for optical building change detection. The details of
each component are described in the following subsections.
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Multi-level DINO Features

Figure 2. Lightweight feature adapter aligning DINOv3 features
with our backbone.

3.2 Semantic and Context-Rich Multi-Scale Features via
Siamese Encoder with DINOv3 Pretraining

Given a cross-temporal optical pair {It}t∈{1,2}, we adopt a
lightweight convolutional backbone (MobileNet (Sandler et al.,
2019)) followed by an FPN (Wang et al., 2023) to construct
multi-scale representations. Let the backbone and FPN be
Φbackbone and Φfpn, respectively. For each time t, the back-
bone extracts per-level features that are aggregated by the FPN
into a top–down pyramid:

Fpyramid,t =
{
F

(l)
pyramid,t

}4

l=1
= Φfpn

(
Φbackbone(It)

)
, (1)

where l indexes the pyramid levels.

When trained on limited data without strong semantic super-
vision, the pyramid features Fpyramid,t tend to lack context.
To inject semantic priors, we incorporate the large-scale pre-
trained foundation model DINOv3 (Siméoni et al., 2025). To
avoid catastrophic forgetting, DINOv3 is frozen (Fig. 2) and
four intermediate, semantics-rich feature maps are tapped, res-
ized to the corresponding pyramid scales, and passed through
a Lite Adaptation Module (LAM) to align channels and distill
semantics:

Fdino,t = DINOv3(It) = {F (l)
dino,t }

4
l=1 = Fdino,t, (2)

F̂dino,t = { F̂ (l)
dino,t }

4
l=1 = {Φ(l)

LAM(Resize(F
(l)
dino,t ))}

4
l=1,

(3)
where DINOv3(·) denotes the frozen DINOv3 model, Φ(l)

LAM(·)
the l-th lightweight adapter, and Resize(·) denotes bilinear in-
terpolation resizing.

To fuse the adapted DINO features with the backbone–FPN pyr-
amid, we employ a Dense Feature Fusion Module (DFFM) that
concatenates the two streams, applies a depthwise–separable
convolution (Chollet, 2017), and uses CBAM attention (Woo
et al., 2018) to produce a semantic- and context-rich pyramid:

F̂ (l)
pyramid,t = Φ

(l)
DFFM

(
F

(l)
pyramid,t, F̂

(l)
dino,t

)
, l = 1, . . . , 4, (4)

where F
(l)
pyramid,t and F̂

(l)
dino,t are defined in Eqs. (1) and (3).

At the end of the encoder, we compute multi-scale element-wise
absolute differences D = {D(l)}4l=1 between the bi-temporal
pyramids to obtain the decoder inputs:

D(l) =
∣∣∣F̂ (l)

pyramid,1 − F̂ (l)
pyramid,2

∣∣∣ . (5)

Overall during training, the backbone+FPN branch adapts to
task-specific details and local structures, while the frozen
DINOv3 branch supplies robust semantic context; their fusion
yields multi-scale representations that are both fine-grained and
semantically consistent, from which we compute per-level ab-
solute differences as a multi-scale change prior to drive the de-
coder.
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Figure 3. Spatial–spectral differential transformer (S2DT)
block. Incorporates a differential transformer into

overlapped-window spatial self-attention and pairs it with
channel-wise self-attention to refine feature intensities.

3.3 Building-Aware Decoder via Spatial and Spectral Self-
Attention Decoder

The decoder upsamples and transforms the fused bi-temporal
features, specifically the multi-scale absolute-difference maps
D (Eq. 5), into a high-resolution change map. It reconstructs
spatial detail and produces a pixel-wise prediction that separates
changed from unchanged regions.

Guided by D as a change prior, we design a Spatial–Spectral
Differential Transformer (S2DT), a transformer module that
fuses spatial and spectral (channel-wise) self-attention and in-
stantiates the differential transformer (Ye et al., 2024) as the
core attention mechanism. Differential transformers, origin-
ally validated in large-language-model settings for focusing on
informative tokens while suppressing noise, are well suited
here for filtering illumination-induced or misregistration arti-
facts and other irrelevant responses.

The spatial differential attention in the differential self-attention
block of S2DT is summarized as follows. Given a feature map
X ∈ RC×H×W , we obtain queries, keys, and values via 1×1
convolutions and reshape them into h heads with token length
N=HW and head width d=C/h:

Q,K, V ∈ Rh×N×2d,

Q = [Q1; Q2], K = [K1; K2],
(6)

where [·; ·] denotes channel splitting. Two spatial attentions are



computed on the halves:

A1 = softmax

(
Q1K

⊤
1√

d

)
, A2 = softmax

(
Q2K

⊤
2√

d

)
.

(7)
They are combined in a multihead differential form:

X̃ =
(
A1 − ΛA2

)
V ∈ Rh×N×2d,

X̃ =
(
X̃(i)

)h
i=1

, X̃(i) ∈ RN×2d,
(8)

where Λ = diag(λ(1), . . . , λ(h)) holds per-head, positive,
learnable coefficients. The per-head outputs are normalized
with RMSNorm (Zhang and Sennrich, 2019), concatenated, and
projected back to the spatial tensor. The spatial differential at-
tention operator ΦSDA is defined as:

ΦSDA(X) = Wprj Concat
h
i=1

(
RMSNorm(X̃(i))

)
∈ RC×H×W ,

(9)
where Wprj denotes the projection weights. This differential
attention (A1 − ΛA2) emphasizes informative spatial corres-
pondences while attenuating distractors, yielding sharper and
cleaner responses for change localization.

Consequently, S2DT targets pixel-level change discrimination
across pyramid levels. To coordinate information across scales,
we adopt a gated-fusion operator G(·), illustrated in Fig. 1, that
adaptively controls cross-level contributions. For level l,

F
(l)

S2DT
=

{
G
(
D(l), F

(l+1)

S2DT

)
, l = 1, 2, 3,

Φ
(l)

S2DT

(
D(l)

)
, l = 4,

(10)

where Φ
(l)

S2DT
(·) denotes the S2DT block at level l. Fully con-

volutional heads (FCHs) then produce auxiliary predictions for
deep supervision:

P̂ (l)
aux = Upsample

(
H(l)

(
F

(l)

S2DT

))
, l = 1, . . . , 4, (11)

where H(l)(·) denotes the oer-level FCH that maps S2DT fea-
tures to a binary change logit map, and Upsample(·) denotes
bilinear interpolation.

3.4 Refining Binary Prediction Using Learnable Morpho-
logy

Direct upsampling via interpolation can produce a reasonably
structured change logit, but it may still contain fragmented in-
teriors and spurious protrusions. Classical morphology helps
alleviate this issue, but fixed structuring elements often over-
smooth edges or remove fine details. We therefore propose
learnable morphological module (LMM), which adopt learn-
able structuring elements (fixed window size, trainable weights)
and fuse the refined result with the original logits in an end-to-
end manner. The final prediction P̂ is

P̂ = ασ−1
(
Closing

(
Opening

(
σ(P̂ (1)

aux),Ω1

)
,Ω2

))
+ (1− α) P̂ (1)

aux.
(12)

where α ∈ [0, 1] is a learnable mixing weight; σ(·) denotes
the sigmoid function and σ−1(·) its inverse (logit), and Ω1,Ω2

are learnable structuring kernels with window sizes of 3 and 5,
respectively. We define opening and closing as

Opening(M,Ω) = Dil
(
Ero(M,Ω), Ω

)
, (13)

Closing(M,Ω) = Ero
(
Dil(M,Ω), Ω

)
, (14)

with Ero(·, ·) and Dil(·, ·) denoting differentiable erosion
and dilation implemented via softmin/softmax approximations.
This morphology head removes noise while preserving building
shapes and connectivity.

Finally, we obtain the binary change map P̂bin by thresholding
the logit prediction P̂ .

Soft Dilate

Soft Erode

Soft Dilate

Soft Erode
Opening

Closing

Sigmoid

Logit

Figure 4. Learnable morphological module (LMM). Classical
opening and closing with learnable structuring elements further

refine the prediction.

3.5 Objective Function

Let Y ∈ {0, 1}H×W denote the binary ground truth, P̂ ∈
RH×W the final prediction logits, and {P̂ (l)

aux}4l=0 the auxili-
ary prediction logits. To address the foreground–background
class imbalance, we use two popular losses, Focal loss (Lin et
al., 2018) Lfocal and Dice loss (Sudre et al., 2017) Ldice, and
weight them with a hyperparameter β. We also apply deep su-
pervision to the auxiliary maps:

Lmain = Lfocal(P̂ , Y ) + β Ldice(P̂ , Y ), (15)

Laux =

4∑
l=0

[
Lfocal(P̂

(l)
aux, Y ) + β Ldice(P̂

(l)
aux, Y )

]
, (16)

Ltotal = Lmain + 0.5Laux. (17)

We set β = 0.5 for all experiments.

4. Experiments

4.1 Experiment Details

Benchmark Datasets. We evaluate on four public change
detection datasets: LEVIR-CD (Chen and Shi, 2020),
WHU-CD (Ji et al., 2019), S2Looking-CD (Shen et al., 2021),
and SYSU-CD (Shi et al., 2022), the cross-temporal image
pairs in all datasets are well registered. Using the same data
and official splits as in previous work (Han et al., 2023) to
ensure a fair comparison of apples to apples. LEVIR-CD,
WHU-CD, and S2Looking-CD are object-specific, focusing
on building change detection (BCD), whereas SYSU-CD is
category-agnostic. LEVIR-CD contains Google Earth image-
pair patches collected across 20 regions with 5–14 year in-
tervals. WHU-CD comprises aerial images of the same area
before and after an earthquake. S2Looking-CD consists of
large side-looking satellite pairs captured at different off-nadir
angles, with significant illumination variation and extensive



rural scenes. SYSU-CD includes diverse change types such
as road expansion, newly built urban structures, vegetation
changes, suburban sprawl, and groundwork prior to construc-
tion. The numbers of training/validation/testing pairs are
7,120/1,024/2,048 (LEVIR-CD), 4,536/504/2,760 (WHU-CD),
56,000/8,000/16,000 (S2Looking-CD), and 12,000/4,000/4,000
(SYSU-CD). Following common practice, we tile image pairs
into 256× 256 patches without overlap and apply no additional
curation beyond the official partitions.

Table 1. Quantitative comparisons in terms of IoU, F1, Recall,
and Precision on LEVIR-CD and WHU-CD datasets.

LEVIR-CD WHU-CD

Methods IoU F1 Pre. Rec. IoU F1 Pre. Rec.

FC-Diff 73.23 84.55 89.18 80.37 63.63 77.78 89.29 68.89
IFNet 84.51 91.60 93.63 89.66 81.52 89.82 87.47 92.30
BIT 81.72 89.94 90.33 89.56 68.02 80.97 74.01 89.37
ChangeFormer 81.69 89.92 91.70 88.20 78.51 87.96 91.07 85.06
A2Net 84.30 91.48 92.10 90.87 86.66 92.85 95.19 90.62
CGNet 85.21 92.01 93.15 90.90 86.21 92.59 94.47 90.79
CLAFA 85.31 92.07 93.26 90.91 87.80 93.50 95.51 91.58
BiFA 82.65 90.50 91.56 89.46 86.75 92.91 94.41 91.45
WS-Net++ 83.86 91.22 92.65 89.84 86.96 93.03 94.82 91.30
ChangeCLIP∗ 85.26 92.04 92.62 91.47 81.91 90.05 92.59 87.65
ChangeRD 78.85 88.18 90.36 86.10 75.22 85.86 91.44 80.92
CDMamba 82.38 90.34 91.57 89.15 83.71 91.13 94.93 87.63
Ours 85.72 92.31 92.47 92.15 89.00 94.18 95.69 92.72

Table 2. Quantitative comparisons in terms of IoU, F1, Recall,
and Precision on S2Looking-CD and SYSU-CD datasets.

S2Looking-CD SYSU-CD

Methods IoU F1 Pre. Rec. IoU F1 Pre. Rec.

FC-Diff 24.61 39.50 80.20 26.10 42.03 59.18 90.31 44.01
IFNet 44.76 61.84 69.06 55.98 66.02 79.53 87.30 73.04
BIT 45.62 62.65 70.26 56.53 57.88 73.32 75.15 71.58
ChangeFormer 46.69 63.65 69.51 58.71 64.29 78.26 78.17 78.36
A2Net 48.39 65.61 69.21 61.66 71.37 83.29 86.54 80.28
CGNet 46.78 63.74 70.72 58.02 66.55 79.92 86.37 74.37
CLAFA 48.75 65.55 71.09 60.81 70.10 82.43 84.38 80.56
BiFA 45.70 62.73 65.15 60.49 71.73 83.53 87.05 80.29
WS-Net++ 49.54 66.26 69.50 63.30 70.13 82.44 87.05 78.29
ChangeCLIP∗ - - - - 70.46 82.67 84.89 80.56
ChangeRD 29.73 45.84 62.10 36.33 59.38 74.52 79.87 69.83
CDMamba 44.85 61.92 65.44 58.77 65.72 79.32 81.01 77.69
Ours 50.52 67.13 71.63 63.17 73.46 84.70 87.87 81.75

Evaluation Metrics. For the binary change detection per-
formance evaluation, we use the Intersection-over-Union (IoU),
F1 score, precision (Pre.) and recall (Rec.) for the change class.

Compared Methods. To evaluate the proposed Chan-
geDINO, we compare it against a broad set of state-of-the-
art RSCD methods. As noted in Related Work section, re-
cent RSCD research is dominated by deep learning, primar-
ily along two lines: CNN-based and Transformer-based mod-
els. Accordingly, we benchmark against multiple represent-
ative approaches: five CNN-based (FC-Diff (Daudt et al.,
2018), IFNet (Zhang et al., 2020), A2Net (Li et al., 2023),
CGNet (Han et al., 2023), CLAFA (Wang et al., 2023)) and
four Transformer-based (BIT (Chen et al., 2021), Change-
Former (Bandara and Patel, 2022), BiFA (Zhang et al., 2024),
ChangeRD (Jing et al., 2025)). In addition, we include three
recent frameworks that reflect emerging trends: a multi-model-
based method (ChangeCLIP (Dong et al., 2024)), a domain-
adaptation method (WS-Net++ (Xiong et al., 2024)), and a
Mamba-based method (CDMamba (Zhang et al., 2025)).

Implementation Details. The proposed ChangeDINO
is implemented in PyTorch (Paszke et al., 2019) and
trained/evaluated on a single NVIDIA RTX 3090 GPU.
During training, input pairs are cropped to 256 × 256 with a
batch size of 16. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with an initial learning rate of 5 × 10−4 (set
to 1× 10−4 for WHU-CD), and apply a cosine decay schedule
down to 1 × 10−7. Models are trained for 100 epochs on
LEVIR-CD and WHU-CD, and for 50 epochs on SYSU-CD
and S2Looking-CD. Standard data augmentation (random
rotations, flips, and crops) is applied during training.

4.2 Quantify Analysis and Visualize Results

In quantitative comparisons, the best and second best results
are highlighted in bold and underline, respectively, for clar-
ity. LEVIR-CD and WHU-CD are comparatively easier bench-
marks, whereas S2Looking-CD and SYSU-CD are more chal-
lenging: the former involves large side-looking imagery with
varying off-nadir angles, and the latter is category-agnostic
with diverse change types. Tables 1 and 2 report the quant-
itative results of our method against recent state of the art.
An asterisk (∗) on ChangeCLIP indicates the use of the of-
ficially released pretrained weights only. Across all four
datasets, ChangeDINO outperforms all SOTAs and attains
the best IoU and F1 scores. CLAFA performs strongly on
LEVIR-CD and SYSU-CD but lags on S2Looking-CD, while
WS-Net++ excels on WHU-CD and S2Looking-CD yet trails
on LEVIR-CD. ChangeCLIP is also highly competitive, rein-
forcing that foundation/model-pretrained representations are an
effective and growing direction for RSCD. It is worth noting
that FC-Diff and IFNet achieve high precision (Pre.) but un-
derperform on other metrics, likely because they favor only the
most salient changes and miss subtle or boundary pixels.

For qualitative comparison, due to space constraints, we select
representative methods spanning different RSCD paradigms to
visualize predictions. As shown in Fig. 5, on LEVIR-CD and
WHU-CD our method exhibits the most accurate delineation
of changes with fewer false positives (FP) and false negatives
(FN). Note that true positives (TP) and true negatives (TN) are
rendered in white and black, respectively, while FP and FN are
rendered in and , respectively. Figs. 6 and 7 present results
on the more challenging benchmarks. ChangeDINO maintains
superior visual quality, producing cleaner masks with sharper
building boundaries and less spurious noise.

To further illustrate the effect of each component, we select
six representative scenes from LEVIR-CD and SYSU-CD and
visualize (i) the difference features at two pyramid levels (D3

and D1), (ii) the corresponding S2DT features, and (iii) the
final prediction after LMM (P̂ ), as shown in Fig. 8. PCA is
used for all visualizations. The difference maps show that deep
levels already highlight potential change regions, while shallow
levels better preserve building structure and suppress irrelevant
objects. After the S2DT blocks, true changes become more dis-
tinct and noise is reduced. The LMM output further sharpens
boundaries and produces cleaner masks.

In addition, Fig. 9 visualizes level-2 DFFM features of three
image pairs (also via PCA). Different land covers such as trees,
bare land, and roads are clearly separated, indicating that the
DINOv3 branch supplies rich and discriminative semantics bey-
ond the target buildings.
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Figure 6. Qualitative experimental results on S2Looking-CD.
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Figure 7. Qualitative experimental results on SYSU-CD
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Figure 8. Visualized features of scenes from LEVIR-CD and
SYSU-CD. Darker colors indicate stronger attention. (Zoom-in

for details).
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Figure 9. Visualized DFFM features (adapted DINOv3 features)
from LEVIR-CD. We utilize vibrant color to demonstration.

(Zoom-in for details).

4.3 Ablation Study

To evaluate the contribution of each component in the pro-
posed architecture, we conduct ablation experiments on the
LEVIR-CD and SYSU-CD datasets. As shown in Tab. 3, re-
moving the DFFM causes the performance to drop by about
1.23 and 1.85 points of IoU on LEVIR-CD and SYSU-CD, re-
spectively. This suggests that DFFM is the most influential of
the three modules, and confirms that distilling semantics from
a large-scale pretrained model is particularly beneficial when
training on relatively small RSCD datasets. For the S2DT de-
coder, the “w/o S2DT” variant is implemented by replacing
it with a residual convolutional block. The observed degrada-
tion further indicates the effectiveness of combining spatial and
spectral attention with the differential transformer design.

For the LMM, we find that enabling it improves results on both
LEVIR-CD and SYSU-CD. It helps suppress small spurious re-
sponses while preserving building shapes, which is useful for
both finely annotated data (LEVIR-CD) and coarser, large-area
changes (SYSU-CD). Overall, the morphology-based refine-
ment acts as an effective post-prediction regularizer across dif-
ferent annotation granularities. Overall, these ablations demon-
strate that each proposed component in ChangeDINO contrib-
utes to improving RSCD performance under different dataset
characteristics.

5. Conclusion

In this work, we proposed ChangeDINO, an end-to-end frame-
work for optical building change detection that combines a Sia-
mese backbone, DINOv3-pretrained multi-scale features, a spa-
tial–spectral differential transformer decoder, and a learnable

Table 3. Ablation studies of the proposed components on the
WHU-CD and LEVIR-CD datasets. ✓ and ✗ denote ”w/” and

”w/o” the specific module.

Components LEVIR-CD SYSU-CD

DFFM S2DT LMM IoU F1 IoU F1

✗ ✗ ✗ 84.23 91.44 70.06 82.40
✗ ✓ ✓ 84.49 91.59 71.61 83.46
✓ ✗ ✓ 84.98 91.88 72.87 84.30
✓ ✓ ✗ 85.65 92.27 72.54 84.09
✓ ✓ ✓ 85.72 92.31 73.46 84.70

morphology head. The DINOv3 branch provides semantic-
ally strong, domain-agnostic features for small RSCD data-
sets, the S2DT decoder uses change priors to emphasize true
changes and suppress artifacts, and the morphology module re-
fines boundaries. Experiments on four public benchmarks show
that ChangeDINO outperforms recent CNN-, Transformer-, and
foundation-model–based methods in IoU and F1, and ablations
confirm the contribution of each component. In future work,
we plan to extend the framework to multi- and hyperspectral
remote sensing data and to related tasks such as land-cover
change analysis and UAV-based urban monitoring under the
deep learning paradigm.
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