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Abstract

The Segment Anything Model (SAM), a vision
foundation model, exhibits impressive zero-shot
capabilities in general tasks but struggles in spe-
cialized domains. Parameter-efficient fine-tuning
(PEFT) is a promising approach to unleash the
potential of SAM in novel scenarios. However,
existing PEFT methods for SAM neglect the
domain-invariant relations encoded in the pre-
trained model. To bridge this gap, we propose
InfoSAM, an information-theoretic approach that
enhances SAM fine-tuning by distilling and pre-
serving its pre-trained segmentation knowledge.
Specifically, we formulate the knowledge transfer
process as two novel mutual information-based
objectives: (i) to compress the domain-invariant
relation extracted from pre-trained SAM, exclud-
ing pseudo-invariant information as possible, and
(ii) to maximize mutual information between the
relational knowledge learned by the teacher (pre-
trained SAM) and the student (fine-tuned model).
The proposed InfoSAM establishes a robust dis-
tillation framework for PEFT of SAM. Extensive
experiments across diverse benchmarks validate
InfoSAM’s effectiveness in improving SAM fam-
ily’s performance on real-world tasks, demonstrat-
ing its adaptability and superiority in handling
specialized scenarios. The code and models are
available at InfoSAM project page.
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Figure 1: Comparing traditional PEFT and distillation
paradigms with our proposed InfoSAM. (a) Existing PEFT
methods for SAM directly adjust the trainable parameters
of each module individually, often overlooking the cross-
module relationships. (b) Traditional SAM distillation meth-
ods focus on model compression via paired feature align-
ment but lack relational guidance during projection training.
(c) In contrast, our InfoSAM method enhances PEFT by in-
corporating information-theoretic distillation, enabling the
transfer of domain-invariant relations from the pre-trained
SAM to the fine-tuning student.

1. Introduction
Recently, the Segment Anything Model (SAM) (Kirillov
et al., 2023; Ravi et al., 2022) emerged as a prominent
foundation model for image segmentation. While SAM
demonstrates exceptional zero-shot performance on generic
object segmentation, it often struggles with domain-specific
real-world segmentation tasks (Chen et al., 2023; Zhong
et al., 2024). Therefore, Parameter-Efficient Fine-Tuning
(PEFT) for SAM (Song et al., 2024; Zhang et al., 2024a;
Peng et al., 2024b) has gained attention as a promising
solution, significantly reducing the fine-tuning costs associ-
ated with SAM’s large pre-trained parameter set. Existing
PEFT methods for SAM primarily focus on fine-tuning the
heavy image encoder (Song et al., 2024; Peng et al., 2024b)
or aligning domain-specific features between the mask de-
coder and image encoder (Xiao et al., 2025). However, a
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promising improvement avenue is overlooked: preserving
the beneficial information in pre-trained models.

Notably, SAM follows an encoder-decoder architecture,
where the mask decoder refines the image embeddings ex-
tracted by the image encoder to localize objects. Unified
training or fine-tuning methods (Shu et al., 2025; Xiao et al.,
2025) have demonstrated effectiveness within this frame-
work. This suggests that preserving the implicit relationship
between the encoder and decoder could be beneficial for
model fine-tuning. This relationship may stem from exten-
sive pre-training and be embedded in the feature distribu-
tions, making it delicate and easily disrupted by unrefined
PEFT methods (Wang et al., 2024). We argue that this is
because task-specific tuning tends to override or suppress
the universal visual features learned during pre-training.

To enhance PEFT by leveraging implicit relationships, a nat-
ural approach is to extract these relationships from founda-
tion models and inject them into fine-tuned models tailored
for specific domains. However, not all implicit relationships
are beneficial for downstream tasks—only the key domain-
invariant relationships learned from across domains (Hoff-
man et al., 2018; Xu et al., 2022) contribute positively to
every fine-tuned model. While knowledge distillation serves
as a flexible bridge for transferring information between
models (Gou et al., 2021), we propose to adopt a distilla-
tion approach between the pre-trained model and fine-tuned
model to retain domain-invariant relationships.

Therefore, this brings us to two key challenges: 1) How
can we extract the domain-invariant relationship from pre-
trained foundation models? 2) How can we effectively trans-
fer the extracted information to fine-tuned models?

To address these challenges, we propose InfoSAM, a novel
information-theoretical distillation method specifically de-
signed for SAM PEFT. In order for the teacher to provide a
good amount of the domain-invariant information, first we
have to find out how this information could be quantified. To
this aim, we introduce a robust and efficient Rényi’s entropy-
based quantification from information theory (Ahn et al.,
2019) to measure such a relation. However, not all the rela-
tions in the pre-trained SAM are domain-invariant, there ex-
ists some pseudo-invariant information (e.g., color), which
may negatively impact the generalization ability during the
fine-tuning process (Li et al., 2022a). Therefore, to address
the first challenge, we propose an attention-driven relation
module specifically designed to extract critical structural
patterns from the pre-trained SAM. By minimizing mutual
information between the module’s outputs and both encoder-
decoder embeddings of SAM, it constructs an effective bot-
tleneck that forces the module to maintain compressed yet
domain-invariant representations. Furthermore, to tackle
the second challenge, we effectively distill the valuable re-
lational knowledge from pre-trained SAM to the fine-tuned

SAM by maximizing the mutual information between their
extracted relations. This ensures faithful propagation of
compressed semantic dependencies, thereby facilitating a
more effective fine-tuning process. Our experiments on
SAM and SAM2, evaluated across 4 diverse domains and 8
datasets, show that InfoSAM achieves superior adaptation
and segmentation performance.

Overall, our contribution can be summarized as follows:

• We present InfoSAM, the first information-theoretic
framework for SAM adaptation, introducing an inno-
vative distillation approach tailored for SAM PEFT to
enhance performance in new scenarios.

• InfoSAM proposes novel dual complementary mecha-
nisms for SAM adaptation: a relational bottleneck that
strategically compresses task-irrelevant dependencies
while preserving domain-invariant semantics, coupled
with adaptive cross-model mutual information maxi-
mization ensuring provable preservation of essential
structural knowledge.

• We conduct a comprehensive benchmark across diverse
domains, including natural images, medical imaging,
agriculture, and remote sensing. InfoSAM consistently
demonstrates superior performance compared to other
PEFT and distillation techniques across various down-
stream tasks.

2. Related Work
2.1. Parameter Efficient Fine-Tuning for SAM

Parameter-Efficient Fine-Tuning (PEFT) alleviates the chal-
lenges of task-specific deployment in large foundation mod-
els by fine-tuning only a minimal subset of parameters
while keeping the majority frozen. Several prior works
explore fine-tuning SAM for downstream tasks. SAM-
Adapter (Chen et al., 2023) is one of the pioneering works
applying the PEFT method to SAM, incorporating task-
specific prompts for each adapter. SU-SAM (Song et al.,
2024) presents a simple framework to efficiently fine-tune
the SAM with Adapter or LoRA. SAM-COBOT (Peng et al.,
2024b) boosts existing PEFT techniques for fine-tuning
SAM through cross-block orchestration. BLO-SAM (Zhang
et al., 2024a) finetunes SAM based on bi-level optimiza-
tion, eliminating the need for manual prompts by a learn-
able prompt embedding. Conv-LoRA (Zhong et al., 2024)
integrates ultra-lightweight convolutional parameters into
LoRA, injecting image-related inductive biases into the
plain ViT encoder.

However, the above methods overlook preserving pre-
trained information in foundation models during fine-tuning.
Our work explores enhancing fine-tuning methods for SAM
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Figure 2: The Flowchart of InfoSAM. To leverage the domain-invariant relationships within modules from a well-trained
foundation model (i.e., SAM) for enhancing PEFT. InfoSAM pioneers an information-theoretic framework for parameter-
efficient SAM adaptation through two synergistic components: 1) Strategic compression of task-irrelevant dependencies
while preserving domain-invariant feature relationships through optimized interaction between image embeddings zTi and
mask tokens zTm (Eq.5), and 2) Cross-model mutual information maximization to ensure faithful knowledge transfer (Eq.6).
The right Venn diagrams illustrate the information constraint from the optimization problem.

from a novel perspective: leveraging information-based dis-
tillation to maintain domain-invariant relationships.

2.2. Knowledge Distillation for SAM

Knowledge distillation (KD) (Gou et al., 2021) effec-
tively transfers knowledge from a large, well-trained model
(teacher) to a smaller or simpler one (student). When ap-
plying KD to SAM, most efforts focus on compressing and
transferring representations for downstream tasks. Mobile-
SAM (Zhang et al., 2023a) distills SAM’s ViT encoder into
a TinyViT, while TinySAM (Shu et al., 2025) uses full-stage
KD. Other approaches distill SAM’s semantic priors for
tasks like medical segmentation (Dong et al., 2024; Shen
et al., 2024) and image restoration (Zhang et al., 2024b).
However, these methods focus on paired feature maps, ne-
glecting the inter-module relationships within the teacher
SAM. To address this, our approach utilizes information-
theoretic principles to extract and transfer compact inter-
module relationships to the student model.

2.3. Domain-invariant Information in SAM

The concept of domain-invariant information was first in-
troduced in prior works on domain adaptive segmentation
(DAS), which explored cross-domain invariant features such
as edge and structural information (Hoffman et al., 2018).
DAS aims to learn domain-invariant representations across
multiple domains and follows two main approaches: (i) ex-
traction and refinement of domain-invariant features,where

methods like feature disentanglement (Chang et al., 2019)
or analysis (Xu et al., 2022) decompose images into domain-
invariant (e.g., shapes, edges) and domain-specific (e.g.,
textures, colors) components, aiming to enhance the for-
mer while suppressing the latter; (2) GAN-based domain-
invariant feature generation, which employs adversarial
training to align domains at different levels: image (Li
et al., 2022b), feature (Ma et al., 2024), and output (Huang
et al., 2022). For example, GLGAN (Ma et al., 2024) in-
tegrates multi-scale global and local features to improve
cross-domain transferability in remote sensing.

SAM’s large-scale pretraining encodes domain-invariant
patterns for strong zero-shot generalization. Recent works
leverage these universal visual patterns for downstream
tasks (Peng et al., 2024a). However, these methods rely
on complex designs or external data to learn representations.
In contrast, we focus on preserving the domain-invariant
information in pre-trained SAM for fine-tuning.

3. Preliminaries
3.1. Rényi’s α-entropy and Mutual Information

In information theory, matrix-based Rényi’s α-entropy pro-
vides a novel way to quantify single-variable information
or interactions across variables directly from samples. Un-
like Shannon entropy, it leverages the eigenspectrum of a
Gram matrix in reproducing kernel Hilbert space (RKHS),
avoiding costly distribution evaluations(Gong et al., 2022).
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Definition 1. Let κ : X × X 7→ R be an infinitely divisible
positive kernel (Bhatia, 2006). Given {xi}ni=1 ⊂ X , each
xi being a real-valued scalar or vector, and the Gram matrix
K obtained from Kij = κ(xi, xj), a matrix-based analog
to Rényi’s entropy can be defined as:

Sα(A) =
1

1− α
log2

[
n∑

i=1

λα
i (A)

]
(1)

where the kernel matrix Aij =
1
n

Kij√
KiiKjj

is the normalized

version of K and tr(A) = 1. The λi(A) denotes the ith
eigenvalue of A.

Definition 2. Given n pairs of samples {zi = (xi, yi)}ni=1,
and two positive definite kernels κ1 : X × X 7→ R and
κ2 : Y × Y 7→ R. After computing the Gram matrix A and
B, a joint Rényi’s entropy can be defined as:

Sα(A,B) = Sα

(
A ◦B

tr(A ◦B)

)
(2)

where (A ◦B) denotes the Hadamard product between the
matrices A and B. The mutual information Iα(A;B) can
be computed as:

Iα(A;B) = Sα(A) + Sα(B)− Sα(A,B) (3)

The matrix-based Rényi’s mutual information eliminates the
need for high-dimensional probability density estimation
of Shannon entropy, offering a more accurate and computa-
tionally efficient solution (Dong et al., 2023).

4. Methodology
4.1. Background and Notions

The overview of InfoSAM is illustrated in Fig. 2. Given
a teacher model and a student model, we denote the pre-
trained SAM as ϕT and the fine-tuned SAM as ϕS , which
are parameterized by ω. Let X ∼ D be an input sampled
from the downstream dataset D. The representations pro-
duced by ϕT (X) and ϕS(X) are defined as follows: The
output features of the image encoder are denoted as zTi
and zSi , where zTi , z

S
i ∈ RB×H×W×D. Here, B is the

batch size, H and W represent the height and width, respec-
tively, and D is the dimension of the image embeddings.
Similarly, the output tokens from the two-way transformer
in the mask decoder are denoted as zTm and zSm, where
zTm, zSm ∈ RB×N×D. These tokens encode the target mask
information in a more abstract manner. Here, N represents
the number of masks, and the output token shares the same
dimension D as the image embeddings.

The goal of PEFT is to fine-tune ϕS(X;ω) for adaptation to
a new downstream task under the supervision of the teacher
model ϕT , where ω denotes the trainable PEFT parameters.

To enhance the PEFT process using the frozen pre-trained
teacher SAM, the loss can be formulated as:

ω∗ = argmin
ω

L(X,Y | T ), (4)

where T represents intermediate features extracted by the
teacher model, capturing the relational information within
SAM modules, and Y is the full dense label map. Following
prior work, the task-specific loss function L(·) is chosen as
the structure loss (Zhong et al., 2024).

In this paper, rather than directly aligning paired representa-
tions between teacher and student (Zhang et al., 2023a; Shu
et al., 2025), we leverage robust prior relational information
from the pre-trained SAM to guide the PEFT process.

4.2. An Information View of SAM Distillation

Problem Formulation. Intuitively, the relationships be-
tween different modules in a well-trained foundation model
are invaluable, as they are learned from extensive datasets.
However, traditional PEFT methods for SAM, when fine-
tuned to downstream tasks, risk disrupting these relation-
ships. In this way, we need to address two key questions:
how to capture critical relations from the pre-trained SAM
and how to effectively transfer it to the fine-tuned model.

Firstly, by treating the teacher model as a mapping function,
we argue that the critical relation information resides in
multivariate mutual information Iα(z

T
i , z

T
m; rT ), where zTi ,

zTm and rT represent the image embedding, mask token and
relational interactions of the teacher, respectively. As such,
Iα(z

T
i , z

T
m; rT ) quantifies how much information rT can

tell about (zTi , z
T
m). Crucially, this mutual information con-

stitutes a learnable bottleneck that fundamentally constrains
the knowledge transfer process. The bottleneck mechanism
enforces selective attention by restricting the information
flow to a compressed representation, where only the most
salient teacher-student interactions can be preserved. This
is particularly vital as not all relations in the pre-trained
SAM are universally transferable. For example, invariant
features (e.g., geometric outlines) that exhibit cross-domain
consistency are effective, while pseudo-invariant features
(e.g., color distributions) that carry domain-specific biases
need to be suppressed (Li et al., 2022a).

To prioritize domain-invariant relations, we constrain the
information flow via an upper bound Ic:

Iα(z
T
i , z

T
m; rT ) ≤ Ic (5)

where rT = fT (zTi , z
T
m; θ) represents the teacher’s rela-

tional mapping between image embeddings and mask to-
kens. The relation module is defined as fT (zTi , z

T
m; θ) :

RB×H×W×D × RB×N×D → RB×N×(H·W ). The θ repre-
sents the parameters of the relation module. This compres-
sion forces the module to retain only essential information
for distillation.
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After that, we employ a distillation approach to transfer the
core relationships by maximizing their mutual information:

max
ω

Iα(r
T ; rS)

subject to Iα(z
T
i , z

T
m; rT ) ≤ Ic

(6)

where rS = fS(zSi , z
S
m; θ) denotes the student’s relation

in fine-tuned SAM, with fS sharing the same parame-
ters as fT . The information bottleneck principle operates
through two coupled mechanisms: (i) compression via mini-
mizing Iα(z

T
i , z

T
m; rT ) to extract minimal sufficient statis-

tics rT from (zTi , z
T
m), and (ii) distillation via maximizing

Iα(r
T ; rS) to preserve maximal predictive information. The

Lagrangian formulation explicitly implements this trade-off:

max
ω

Iα(r
T ; rS)− βIα(z

T
i , z

T
m; rT ) (7)

where β is a hyper-parameter for trade-off.

Compressing Intra-SAM Relations. To efficiently capture
the relationship within pre-trained SAM, we propose an
attention-based module designed for extraction, illustrated
in Fig. 3. Given zTi , the output of the image encoder of
SAM, and zTm, the mask token embedding, as the input
of relation module fT . It mainly uses a combination of
attention mechanisms and residual connections.

First, both zTi and zTm are passed through a Layer Normal-
ization step to stabilize the features. After that, zTm and zTi
are linearly projected into a query vector Q ∈ RB×N×D

and a key vector K ∈ RB×(H·W )×D, respectively:

Q = WQ · LayerNorm(zTm),

K = WK · LayerNorm(zTi )
(8)

where WQ,WK ∈ RD×D are learnable projection matri-
ces. The attention scores are computed by combining two
components: the scaled dot product of Q and K and the
residuals from the dot product of zTm and zTi . The scores are
summed to produce the final attention map:

Sα =
QK⊤
√
D

+ zTm · zT⊤
i (9)

where Sα is the attention score. To ensure consistency
and comparability, α is flattened and normalized using ℓ2-
normalization, resulting in the final output of fT , denoted
as rT . To encourage the relation encoding process to focus
on domain-invariant information, the first loss for relation
compression can be expressed as:

Lr =Iα(z
T
i , z

T
m; rT )

=������
Sα(G

T
i , G

T
m) + Sα(G

T
r )− Sα(G

T
i , G

T
m, GT

r )
(10)

where GT
i , G

T
m, GT

r ∈ RN×N are the Gram matrices in-
duced by a batch of normalized features zTi , zTm, and the

Relation 
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Figure 3: The architecture of attention-based relation mod-
ule. It is designed to capture the relationship between image
encoder and mask decoder, facilitating effective interaction
between these components in SAM.

output of rT with a polynomial kernel of degree 1. No-
tably, the teacher entropy term in this loss is excluded, as
the teacher’s weights remain fixed during PEFT.

According to Eq.(1), computing eigenvalues of large ma-
trices is computationally intensive (Kerr et al., 2009; Yu
et al., 2019). To mitigate this, we set α = 2, allowing us to
compute matrix-based Rényi’s α-entropy via the Frobenius
norm: |A∥2F = tr(AAH) =

∑n
i=1 λ

2
i (A). Consequently,

Lr can be reformulated as:

Lr = − log2 ∥GT
r ∥2F + log2 ∥GT

imr∥2F (11)

where GT
imr = GT

i ◦ GT
m ◦ GT

r . The ◦ is Hadamard prod-
uct. The first term in Lr acts as a spectral compression
regularizer that constrains the relation module and encour-
ages it to learn more compact and refined representations.
The second term minimizes the joint entropy of the fea-
ture interactions across the image encoder, mask decoder,
and relation module, effectively filtering spurious relation-
ships and preserving domain-invariant interactions critical
for cross-domain adaptation.

Maximizing Inter-SAM Relations. After extracting the
essential relationships between the image encoder and the
mask decoder, we transfer the relationships by minimizing
their distance. A natural choice to accomplish this is by
maximizing the mutual information between the two rep-
resentations. While most existing works (Ahn et al., 2019;
Kuang et al., 2023) focus on minimizing a lower bound of
mutual information, we directly maximize the matrix-based
Rényi’s mutual information itself to avoid the expensive
evaluation of underlying distribution for distillation loss:

Ld =− Iα(r
T ; rS)

=− Sα(G
T
r )− Sα(G

S
r ) + Sα(G

T
r , G

S
r )

(12)
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Similarly, GT
r and GS

r denote the Gram matrices correspond-
ing to the student and teacher relations, respectively. We
denote the GTS

r = GT
r ◦GS

r , then the distillation loss can
be expressed as:

Ld = log2 ∥GT
r ∥2F + log2 ∥GS

r ∥2F − log2 ∥GTS
r ∥2F (13)

Consistent with Lr, the Ld also sets the entropy order α to
2 and utilizes the Frobenius norm for equivalent transfor-
mation. From this perspective, the components of Ld can
be viewed as regularization terms (i.e., the first two terms)
and a relation alignment (i.e., the third term) between two
models, while log2 improving robustness to relations.

Overall, combining Eq.(11) and Eq.(13), the final objective
of relation compression and transfer can be defined as:

Linfo = λ1 ∗ Lr + λ2 ∗ Ld (14)

where λ1 and λ2 are hyper-parameters to trade-off between
sufficiency (domain-invariant information transmitted from
rT to rS) and minimality (the complexity of rT ). Further
details and PyTorch-style pseudocode for InfoSAM are pro-
vided in Appendix A.2 and A.3.

4.3. Applying information theory to SAM

Overall Loss Function. Following previous works (Zhong
et al., 2024), we incorporate the proposed information-
theoretic distillation loss Linfo with a structure loss
Lce (Fan et al., 2020b), which combines the weighted IoU
loss and binary cross-entropy loss. The overall loss function
is derived as:

L = Lce + Linfo (15)

Finally, we employ this new loss function for fine-tuning
SAM. During fine-tuning, we first learn robust relations and
then transfer this knowledge. The Linfo regulates infor-
mation flow between SAM’s hierarchical representations,
avoiding over-retention of low-level details while enhancing
geometrically critical features. This aligns with the rate-
distortion tradeoff in information bottleneck theory (Tishby
& Zaslavsky, 2015), where information is compressed and
then generalized.

5. Experiments
Settings. We conduct experiments using SAM (Kirillov
et al., 2023) (with a ViT-B backbone) and SAM2 (Ravi et al.,
2022) (with a Hiera-B+ backbone) with Adapter (Chen et al.,
2022; Song et al., 2024), and LoRA (Hu et al., 2022) across
four real-world domains: medical imaging, natural images,
agriculture, and remote sensing. We fine-tune SAM’s image
encoder by adding adapters or LoRA, while fully training
the decoder directly. We use a batch size of 4 and the
Adam optimizer with an initial learning rate of 2 × 10−4,

utilizing a CosineAnnealing scheduler that decays to a final
learning rate of 2×10−5. All the methods are trained for 10
epochs with structure loss (i.e., the combination of weighted
IoU loss and binary cross entropy loss) unless otherwise
specified. During training, prompts are randomly selected
from noised ground truth boxes and points at a 1:1 ratio.
During evaluation, ground truth boxes are used as the default
geometric input prompts to ensure a fair comparison and
minimize randomness. More implementation details are
provided in Appendix B.

Datasets. In the natural image domain, we focus on cam-
ouflaged object segmentation (Skurowski et al., 2018; Le
et al., 2019; Fan et al., 2020a). For medical imaging, we in-
vestigate polyp segmentation (Bernal et al., 2015; Jha et al.,
2020) and skin lesion segmentation (Codella et al., 2018). In
agriculture and remote sensing, we use leaf disease segmen-
tation (Rath, 2023) and road segmentation datasets (Mnih,
2013) as representative examples, respectively. For further
details on the tasks and datasets, please refer to Appendix C.

To verify the effectiveness of our approach, we compare it
with two categories of methods: PEFT methods and distilla-
tion methods.

PEFT Baselines. The PEFT baselines encompass three
types of methods: the direct application of SAM, PEFT
methods from the NLP or CV domain, and PEFT meth-
ods designed for SAM. These are as follows: 1) The zero-
shot performance of the original SAM. 2) Fine-tune SAM’s
mask decoder only. 3) BitFit (Ben Zaken et al., 2022),
which only fine-tunes bias terms in the pre-trained model.
4) AdaptFormer (Chen et al., 2022), which inserts the train-
able bottleneck layers into the MLP block of the transformer.
5) LoRA (Hu et al., 2022) inserts trainable bottleneck lay-
ers parallel to the frozen linear weight. 6) HQSAM (Ke
et al., 2024), which introduces a learnable high-quality
output token and enhances mask details by fusing mask
decoder features with both early and final ViT features.
7) SU-SAM (Song et al., 2024) presents a simple frame-
work that efficiently fine-tunes the SAM using Adapter or
LoRA. 8) ConvLoRA-SAM (Zhong et al., 2024) injects
image-related inductive biases into the image encoder of
SAM by integrating ultra-lightweight convolutional param-
eters into LoRA.

Distillation Baselines. In this study, we compare our
method with the following baselines: 1) Logit-based dis-
tillation (Zhu et al., 2018). 2) single-layer paired feature
distillation (i.e., PKD (Cao et al., 2022), PKT (Passalis et al.,
2020)), which uses one-stage feature to distill knowledge,
with MobileSAM (Zhang et al., 2023a) belonging to this
category. 3) multiple-layers paired feature distillation (i.e.,
VID (Ahn et al., 2019), IBD (Kuang et al., 2023)), which
utilizes multi-stage information to transfer knowledge, with
each layer aligned separately. Similarly, TinySAM (Shu
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Table 1: Comparison of PEFT methods for SAM across various downstream segmentation tasks. All results are based
on the ViT-B backbone. “SAM”: without adaptation. “decoder-only”: directly fine-tuning the mask decoder of SAM.

METHOD
NATURAL IMAGES MEDICAL AGRICULTURE REMOTE SENSING

CAMO ISIC 2017 Kvasir Leaf Road
Sα ↑ Eϕ ↑ Fω

β ↑ Jac ↑ Dice ↑ Sα ↑ Eϕ ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑

SAM 79.7± 0.02 88.8± 0.09 79.6± 0.01 61.0± 0.12 71.7± 0.14 71.4± 0.16 77.9± 0.17 37.6± 0.11 47.0± 0.16 7.2± 0.24 12.9± 0.29
decoder-only 84.9± 0.38 92.7± 0.34 81.8± 0.33 85.9± 0.34 92.2± 0.20 90.9± 0.05 95.2± 0.18 55.6± 1.12 68.8± 1.17 47.6± 0.47 64.1± 0.47

BitFit 87.5± 0.13 94.5± 0.08 85.3± 0.48 87.7± 0.14 93.2± 0.08 92.5± 0.12 96.3± 0.20 69.2± 0.67 80.3± 0.68 58.1± 0.06 73.1± 0.06
AdaptFormer 87.9± 0.10 94.8± 0.21 86.2± 0.19 87.6± 0.24 93.2± 0.15 93.3± 0.68 97.0± 0.81 75.0± 0.11 84.8± 0.08 61.1± 0.15 75.5± 0.12
LoRA 87.7± 0.59 94.6± 0.50 85.1± 0.64 87.8± 0.24 93.3± 0.13 93.0± 0.14 96.6± 0.11 71.4± 0.54 82.1± 0.62 59.0± 0.19 74.0± 0.17
Adapter 88.2± 0.44 94.8± 0.34 86.7± 0.92 87.7± 0.23 93.2± 0.16 93.4± 0.12 97.1± 0.15 74.4± 0.16 84.3± 0.28 60.5± 0.10 75.1± 0.08

HQ-SAM 85.1± 0.10 92.6± 0.10 81.0± 0.61 86.3± 0.32 92.4± 0.19 91.1± 0.50 95.5± 0.57 66.2± 0.44 77.8± 0.43 54.9± 0.16 70.6± 0.13
SU-SAM 88.3± 0.21 95.0± 0.22 86.2± 0.59 87.8± 0.18 93.2± 0.09 93.8± 0.02 97.5± 0.06 74.7± 0.53 84.5± 0.56 60.2± 0.26 74.8± 0.22
ConvLoRA-SAM 87.5± 0.39 94.5± 0.17 85.4± 0.41 87.7± 0.22 93.2± 0.11 92.9± 0.13 96.6± 0.28 71.4± 0.44 82.2± 0.37 59.6± 0.22 74.4± 0.20

LoRA+Ours 88.3± 0.05 95.2± 0.00 85.8± 0.59 88.1± 0.08 93.5± 0.05 93.4± 0.11 96.8± 0.09 72.2± 0.06 82.8± 0.04 59.9± 0.20 74.6± 0.17
Adapter+Ours 88.6± 0.09 95.1± 0.05 87.1± 0.37 88.0± 0.05 93.4± 0.00 94.4± 0.12 97.9± 0.09 75.6± 0.27 85.2± 0.23 61.4± 0.30 75.8± 0.27

Table 2: Comparison of distillation methods for SAM fine-tuning across various domains. “Teacher”: SAM without
adaptation. “Student”: fine-tune SAM’s image encoder by adding adapters, while fully training the decoder directly. All
compared methods utilize student models with the same adapter-based structure.

METHOD
NATURAL IMAGES MEDICAL AGRICULTURE REMOTE SENSING

CAMO ISIC 2017 Kvasir Leaf Road
Sα ↑ Eϕ ↑ Fω

β ↑ Jac ↑ Dice ↑ Sα ↑ Eϕ ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑

Teacher 79.7± 0.02 88.8± 0.09 79.6± 0.01 61.0± 0.12 71.7± 0.14 83.0± 0.10 88.8± 0.29 37.6± 0.11 47.0± 0.16 7.2± 0.24 12.9± 0.29
Student 88.2± 0.44 94.8± 0.34 86.7± 0.92 87.7± 0.23 93.2± 0.16 93.4± 0.12 97.1± 0.15 74.4± 0.16 84.3± 0.28 60.5± 0.10 75.1± 0.08

Logit 88.4± 0.08 94.9± 0.05 87.1± 0.22 87.2± 0.43 92.9± 0.29 93.2± 0.19 96.5± 0.19 73.0± 0.35 83.3± 0.29 50.9± 0.08 67.2± 0.06

PKD 87.0± 0.43 94.1± 0.23 84.3± 0.97 86.5± 0.26 92.5± 0.17 92.2± 0.25 96.0± 0.17 70.2± 1.15 81.1± 1.08 56.9± 0.61 72.2± 0.56
PKT 87.8± 0.40 94.5± 0.35 86.2± 0.46 87.4± 0.12 93.0± 0.07 93.7± 0.41 97.3± 0.53 74.2± 0.51 84.2± 0.52 60.7± 0.20 75.2± 0.16

IBD 85.2± 0.47 92.6± 0.35 82.4± 0.31 85.1± 0.74 91.7± 0.45 91.5± 0.14 95.3± 0.05 72.2± 0.12 82.7± 0.07 44.9± 0.18 61.5± 0.18
VID 87.9± 0.22 94.8± 0.34 86.3± 0.32 87.6± 0.44 93.1± 0.29 93.7± 0.16 97.4± 0.07 75.1± 0.08 84.9± 0.17 60.7± 0.19 75.4± 0.19

SemCKD 86.2± 0.16 93.5± 0.21 82.8± 1.54 85.4± 0.27 91.8± 0.19 92.4± 0.07 96.2± 0.03 72.0± 0.04 82.8± 0.10 53.5± 0.17 69.4± 0.17
ReviewKD 86.7± 0.07 94.0± 0.09 84.6± 0.63 85.5± 0.26 91.9± 0.15 92.4± 0.33 96.4± 0.26 72.6± 0.64 83.1± 0.47 57.3± 0.11 72.6± 0.11

TinySAM 83.7± 0.39 91.6± 0.31 81.1± 0.35 79.4± 1.12 87.8± 0.84 88.5± 0.31 93.5± 0.24 48.6± 1.14 61.0± 0.95 25.7± 1.19 39.6± 1.71
MobileSAM 87.1± 0.36 94.1± 0.27 85.1± 0.09 86.7± 0.13 92.6± 0.09 92.5± 0.12 96.3± 0.14 71.9± 0.30 82.6± 0.39 59.2± 0.09 74.1± 0.08
InfoSAM(Ours) 88.6± 0.09 95.1± 0.05 87.1± 0.37 88.0± 0.05 93.4± 0.00 94.4± 0.12 97.9± 0.09 75.6± 0.27 85.2± 0.23 61.4± 0.30 75.8± 0.27

et al., 2025) employs full-stage distillation. 4) cross-layer
feature distillation (i.e., SemCKD (Chen et al., 2021a), Re-
viewKD (Chen et al., 2021b)), which utilizes knowledge
from multiple layers of the teacher model to supervise the
student, by leveraging diverse information extracted from
these layers. Currently, no work in SAM has explored cross-
layer fusion distillation for PEFT. InfoSAM is the first to
address this.

We report the main experimental results on representative
datasets from different domains. Additional experimental
results are provided in Appendix D, and visualization results
are available in Appendix G. All experiments are conducted
three times to mitigate randomness, with both average values
and standard errors reported.

5.1. Segment Anything Across Diverse Domains

We compare InfoSAM with two categories of methods:
PEFT methods and distillation methods. The results are
presented in Table 1 and Table 2, respectively. In Table 1, all
PEFT methods outperform both the zero-shot performance
and decoder-only fine-tuning, highlighting the importance
of unified fine-tuning for SAM. Additionally, InfoSAM out-
performs other PEFT techniques across various datasets
from different domains. Compared to other PEFT meth-
ods, InfoSAM preserves the pre-trained, domain-invariant
knowledge through information-based distillation, which
proves effective in enhancing segmentation performance.

In Table 2, it is noteworthy that most distillation methods
are detrimental during PEFT, leading to worse performance
compared to fine-tuning without distillation. Specifically,
TinySAM employs full-stage distillation, requiring the stu-
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Table 3: Comparison of PEFT methods and distillation methods with SAM2 across various domains. All results are
based on the Hiera-B+ backbone. “SAM2”: without adaptation.

(a) PEFT Methods Comparison

METHOD
MEDICAL AGRICULTURE REMOTE SENSING

Sα (Kvasir) IoU (Leaf) IoU (Road)

SAM2 87.1± 0.12 42.7± 0.32 6.9± 0.13
decoder-only 93.2± 0.07 71.8± 0.58 48.5± 0.47

BitFit 93.8± 0.09 75.4± 0.29 59.2± 0.26
AdaptFormer 93.7± 0.19 73.6± 1.10 59.9± 0.35
LoRA 93.7± 0.10 75.9± 0.40 60.8± 0.32
Adapter 94.4± 0.06 76.8± 0.56 60.9± 0.14

LoRA+Ours 94.0± 0.09 76.1± 0.38 60.9± 0.05
Adapter+Ours 94.5± 0.17 77.3± 0.14 61.3± 0.05

(b) Distillation Methods Comparison

METHOD
MEDICAL AGRICULTURE REMOTE SENSING

Sα (Kvasir) IoU (Leaf) IoU (Road)

Teacher 87.1± 0.12 42.7± 0.32 6.9± 0.13
Student 94.4± 0.06 76.8± 0.56 60.9± 0.14

PKT 94.0± 0.25 74.8± 0.14 57.3± 0.07
VID 94.1± 0.47 77.2± 0.37 61.1± 0.38
ReviewKD 93.4± 0.10 72.7± 0.37 55.9± 0.50

TinySAM 89.4± 0.10 45.2± 0.76 23.9± 2.61
MobileSAM 93.3± 0.15 74.1± 0.35 52.3± 0.46
InfoSAM2(Ours) 94.5± 0.17 77.3± 0.14 61.3± 0.05
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(b) Performance on the Road dataset.

Figure 4: Performance of InfoSAM with larger teacher
models (i.e., ViT-L, ViT-H), while the student remains based
on a ViT-B backbone. Each subfigure shows IoU metrics
for different distillation methods on a specific dataset.

dent’s features to fully mimic the teacher at every stage.
However, this becomes catastrophic when the teacher per-
forms poorly (e.g., achieving only 7.2% IoU on the Road
dataset). In contrast, InfoSAM further enhances PEFT per-
formance in this challenging scenario, likely due to the
relation compression process during distillation, which en-
sures the student model learns only the essential information
from the teacher model.

5.2. Extended Experiment with SAM2

Note that our method is orthogonal to model development,
making it easily transferable to SAM2 backbones. As shown
in Table 3, InfoSAM demonstrates consistent effectiveness
with SAM2. This transferability is attributed to InfoSAM’s
foundation in information-theoretic derivation, which is
structure-independent.

Table 4: Ablation study results of two losses: relation
compression loss Lr and distillation loss Ld

Lr Ld
MEDICAL AGRICULTURE REMOTE SENSING

Sα (Kvasir) IoU (Leaf) IoU (Road)

93.4 74.4 60.5
✓ 93.6 (+0.2) 75.2 (+0.8) 61.0 (+0.5)

✓ ✓ 94.4 (+1.0) 75.6 (+1.2) 61.4 (+0.9)

Table 5: Effects of the Relation Module (RM). Enhancing
TinySAM and MobileSAM using RM.

MODEL METHOD
AGRICULTURE REMOTE SENSING

IoU (Leaf) IoU (Road)

TinySAM w/o RM 48.6± 1.14 28.7± 1.69
w RM 50.3± 0.76 33.9± 0.32

MobileSAM w/o RM 71.9± 0.30 59.2± 0.09
w RM 73.8± 0.22 61.3± 0.35

5.3. Distillation Across Models of Different Sizes

We also verify the effectiveness of InfoSAM when scal-
ing the teacher model to larger sizes. As shown in Fig. 4,
InfoSAM shows comparable improvements to distillation
methods specifically designed for SAM compression. It
indicates that InfoSAM is better suited for PFET, even in
traditional large-to-small knowledge distillation scenarios.

5.4. Ablation Study

Ablation of Main Components. We conduct an ablation
study to evaluate the impact of InfoSAM’s components:
relation compression loss Lr and relation distillation loss Ld

on three datasets: Kvasir, Leaf, and Road. Using SAM with
an adapter as the baseline (Table 4, row 1), row 2 introduces
a fixed-dot relation module with mutual information-based
distillation loss. Results show that incorporating simple
relations improves performance, e.g., 0.8% on Leaf, and
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Table 6: Transferability of the Relation Module (RM).
InfoSAM-T represents the model trained with a pre-trained
relation module from a different domain.

METHOD
FROZEN MEDICAL AGRICULTURE

RM FROM Sα (Kvasir) IoU (Leaf)

InfoSAM - 94.4± 0.12 -
InfoSAM-T Leaf 93.7± 0.24 -
InfoSAM - - 75.6± 0.30
InfoSAM-T Kvasir - 75.4± 0.45

mutual information effectively transfers relational features.
Combining both losses yields further gains, e.g., 1.4% on
Leaf.

Effects of Relation Module (RM). To investigate the im-
pact of the proposed relation module, we first conduct ex-
periments to verify its effectiveness in enhancing various
distillation methods. Specifically, we evaluate and compare
the performance of two compact models, MobileSAM and
TinySAM, with and without integrating the relation module,
as shown in Table 5. We can observe a significant improve-
ment with RM, e.g., 1.9% IoU on the Leaf dataset. These
results suggest that the relation module can effectively cap-
ture and leverage high-level semantic information, thereby
providing complementary benefits to existing distillation
strategies during the fine-tuning stage.

Furthermore, Table 6 illustrates the effectiveness of domain-
invariance dependencies in the relation module, we directly
apply the module trained on one specific domain to another
domain with entirely different knowledge. The results show
that it still maintains satisfying results. Moreover, we con-
duct experiments to explore the nature of domain-invariant
information. We use the Boundary F1 Score (Zhang et al.,
2023b) to evaluate such universal patterns. The results show
that our methods employing the relation module perform
better in preserving structural edge features. More results
and analysis are available in Appendix F.

6. Conclusion
We introduce InfoSAM, an information-theoretic tuning
framework designed for SAM adaptation. From an infor-
mation bottleneck perspective, we extract domain-invariant
knowledge from the pre-trained SAM and inject it into the
fine-tuned SAM to enhance adaptation efficiency. Specifi-
cally, we first propose an attention-based module to capture
structural relations while minimizing mutual information to
retain the most essential ones. These relations are then trans-
ferred by maximizing their mutual information. Extensive
evaluations across eight segmentation datasets spanning di-
verse domains and tasks strongly validate the effectiveness
of InfoSAM.
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A. Derivation of information-theoretic Losses
A.1. Multivariate Entropy and Mutual Information

Following Definition 2 and Eq.(2), we consider the matrix-based Rényi’s α-order joint entropy for multiple variables (Yu
et al., 2019).

Definition 3. Given a collection of n samples {si = (xi
1, x

i
2, · · · , xi

k)}ni=1, where the superscript i denotes the sample
index, each sample contains k (k ≥ 2) measurements x1 ∈ X1, x2 ∈ X2, · · · , xk ∈ Xk obtained from the same realization,
and the positive definite kernels κ1 : X1 ×X1 7→ R, κ2 : X2 ×X2 7→ R, · · ·, κk : Xk ×Xk 7→ R, a matrix-based analogue
to Rényi’s α-order joint-entropy among k variables can be defined as:

Sα(A1,A2, · · · ,Ak) = Sα

(
A1 ◦A2 ◦ · · · ◦Ak

tr(A1 ◦A2 ◦ · · · ◦Ak)

)
(16)

where (A1)ij = κ1(x
i
1, x

j
1), (A2)ij = κ2(x

i
2, x

j
2), · · · , (Ak)ij = κk(x

i
k, x

j
k), and ◦ denotes the Hadamard product.

Following Definition 2 and Definition 3, mutual information can be extended to measure interactions among multiple
variables by grouping them into sets and treating each set as a single variable. It can be defined as:

Iα (A1, · · · ,Ak;B) = Sα (A1, · · · ,Ak) + Sα(B)− Sα (A1, · · · ,Ak,B) (17)

where A1, · · · ,Ak and B denote the normalized Gram matrices.

A.2. Derivation of Relation Compression Loss Lr and Relation Distillation Loss Ld

Relation Compression Loss Lr. In this paper, according to Eq.(16) and Eq.(17), the mutual information of the compression
process (k = 2) can be defined as:

Iα (A1,A2;B) = Sα (A1,A2) + Sα(B)− Sα (A1,A2,B) (18)

In the relation compression loss Lr, the matrices A1, A2, and B are normalized Gram matrices constructed from the image
embeddings zTi , the mask embeddings zTm, and the relation module outputs rT , respectively. To maintain consistency
with the previously defined relation compression loss (refer to Eq.(10)), we replace A1, A2, and B with GT

i , GT
m, and

GT
r ∈ RN×N , respectively, where all Gram matrices are computed using the polynomial kernel function defined as:

κ(x, y) = x⊤y, (19)

where x,y ∈ RN are input vectors. For instance, GT
i is computed as the normalized Gram matrix:

GT
i =

κ(zTi , z
T
i )

tr(κ(zTi , z
T
i ))

, (20)

where tr(·) denotes the trace of the matrix.

Furthermore, Rényi’s α-order entropy is reformulated using its eigenvalue expansion (refer to Eq.(1)), leading to:

Lr =Iα(z
T
i , z

T
m; rT )

=������
Sα(G

T
i , G

T
m) + Sα(G

T
r )− Sα(G

T
i , G

T
m, GT

r )

=
1

1− α
log2

n∑
i=1

λα
i

(
GT

r

)
− 1

1− α
log2

n∑
i=1

λα
i

(
GT

imr

) (21)

where GT
imr is also normalized to have a trace of one. The teacher entropy term is excluded from this loss because the

teacher’s weights remain fixed throughout the training process. Substituting the marginal and joint entropy definitions from
Definition 1 and Definition 3, GS

imr = GT
i ◦GT

m ◦GT
r . The ◦ is Hadamard product.

Since computing the eigenvalues of large matrices is typically computationally expensive during training (Kerr et al., 2009),
we restrict the value of α to 2. This choice allows us to use the Frobenius norm as a proxy objective function. Notably, the
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Frobenius norm has a connection with the eigenspectrum. Specifically, for a symmetric matrix A, its Frobenius norm can be
expressed as:

∥A∥2F = tr(AAH) =

n∑
i=1

λi(A
2) =

n∑
i=1

λ2
i (A) (22)

where tr(·) denotes the trace operation. Since A is a symmetric matrix,
∑n

i=1 λi(A
2) is equivalent to

∑n
i=1 λ

2
i (A) (Dong

et al., 2023). Through this formulation, the Frobenius norm not only simplifies the computation but also retains an intrinsic
connection to the matrix eigenspectrum, which is significant for both model training and theoretical analysis. Given GT

r and
GT

imr is positive semi-definite, Lr can be reformulated as:

Lr =
1

1− 2
log2

n∑
i=1

λ2
i

(
GT

r

)
− 1

1− 2
log2

n∑
i=1

λ2
i

(
GT

imr

)
=− log2 ∥GT

r ∥2F + log2 ∥GT
imr∥2F

(23)

The two terms in Lr serve distinct purposes. First, the term − log2 ∥GT
r ∥2F imposes spectral compression on the relation

module. This ensures that the relation module focuses on the most discriminative features while suppressing irrelevant
variations. Second, the term log2 ∥GT

imr∥2F achieves joint entropy minimization across the image encoder, mask decoder,
and relation module. It filters out spurious relationships induced by domain-specific noise while preserving domain-invariant
interactions encoded in GT

imr. This is critical for cross-domain adaptation, as it maintains consistency in feature interactions
across different data distributions.

Relation Distillation Loss Ld. Similar to Lr, the goal of distillation is to maximize the mutual information of teacher-student
relations. The mutual information of the distillation process can be defined as:

Iα
(
rT ; rS

)
=Sα

(
GT

r

)
+ Sα(G

S
r )− Sα

(
GT

r , G
S
r

)
=

1

1− α
log2

n∑
i=1

λα
i

(
GT

r

)
+

1

1− α
log2

n∑
i=1

λα
i

(
GS

r

)
− 1

1− α
log2

n∑
i=1

λα
i

(
GTS

r

) (24)

where GS
r , GT

r and GTS
r = GT

r ◦GS
r is the normalized Gram matrices. Then, applying Eq.(22) and set α = 2, the distillation

loss is:

Ld =− Iα
(
rT ; rS

)
=− 1

1− α
log2

n∑
i=1

λα
i

(
GT

r

)
− 1

1− α
log2

n∑
i=1

λα
i

(
GS

r

)
+

1

1− α
log2

n∑
i=1

λα
i

(
GTS

r

)
= log2 ∥GT

r ∥2F + log2 ∥GS
r ∥2F − log2 ∥GTS

r ∥2F

(25)

Overall, the mutual information loss balances feature constraints by regularizing the student’s relational feature complexity
to prevent overfitting while aligning the student’s and teacher’s relational distributions for effective knowledge transfer. The
three terms in the distillation loss serve distinct purposes: log2 ∥GT

r ∥2F captures the complexity of the teacher’s relational
features, guiding the teacher to learn rich and detailed representations rather than overly simplified ones; log2 ∥GS

r ∥2F regu-
larizes the student’s feature complexity, preventing overfitting by keeping the representations manageable; − log2 ∥GTS

r ∥2F
Aligns the relational distributions between the teacher and student, ensuring the student learns the relationships between
features as captured by the teacher.

A.3. Pseudocode of InfoSAM

Here, we summarize the core fine-tuning process for SAM using the proposed information-theoretic loss in Algorithm.1.
Relationships between features across different network components are modeled and normalized to capture meaningful
interactions. These interactions drive two key loss functions: a compression loss that strengthens the student network’s
ability to represent complex features and a distillation loss that aligns the student’s relational understanding with the teacher’s.
This method emphasizes relational and structural learning to achieve better generalization and accuracy.
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Algorithm 1 PyTorch-style pseudocode for InfoSAM

# F_t, F_s: Pre-trained SAM (teacher) and fine-tuned SAM (student)
# z_t_i, z_s_i: The output of the teacher and student image encoders
# z_t_m, z_s_m: The output tokens in the mask decoder of the teacher and student
# f_t, f_s: Teacher and student relation modules
# y_t, y_s: Teacher and student outputs
# y: Ground-truth labels
# Frob: Function for computing the square of the Frobenius norm

for x, y in loader:
# Forward pass
z_t_i, z_t_m, y_t = F_t(x)
z_s_i, z_s_m, y_s = F_s(x)

# Compute structure loss
loss_ce = struct_loss(y_s,y)

# Compute relations between image encoder and mask decoder
f_s = f_t
r_t = f_t(z_t_i, z_t_m)
r_s = f_s(z_s_i, z_s_m)

# Normalize the representations
z_t_i_norm = F.normalize(z_t_i, p=2)
z_t_m_norm = F.normalize(z_t_m, p=2)

# Compute normalized Gram matrices for compression loss_r
G_t_i = matmul(z_t_i_norm, z_t_i_norm.T)
G_t_m = matmul(z_t_m_norm, z_t_m_norm.T)
G_t_r = matmul(r_t, r_t.T)
G_t_r_norm = G_t_r / trace(G_t_r)
G_t_imr_norm = G_t_i * G_t_m * G_t_r / trace(G_t_i * G_t_m * G_t_r)

# Compute normalized Gram matrices for distillation loss_d
G_s_r = matmul(r_s, r_s.T)
G_s_r_norm = G_s_r / trace(G_s_r)
G_ts_r_norm = G_s_r * G_t_r / trace(G_s_r * G_t_r)

# Compute relation compression loss_r and distillation loss_d
loss_r = - log2(Frob(G_t_r_norm)) + log2(Frob(G_t_imr_norm))
loss_d = log2(Frob(G_t_r_norm)) + log2(Frob(G_s_r_norm)) - log2(Frob(G_ts_r_norm))
loss_info = lamda_1 * loss_r + lamda_2 * loss_d

# The overall loss
loss = loss_ce + loss_info

# Optimization step
loss.backward()
optimizer.step()

B. Implementation Details
B.1. Architectures of Segment Anything Model (SAM)

SAM (Kirillov et al., 2023) consists of three key modules, i.e., image encoder, prompt encoder, and mask decoder. The
image encoder is a heavy ViT-based network for image feature extraction. The prompt encoder is designed to capture
positional information from geometric prompts (i.e., points, boxes, or masks) to generate prompt embeddings. The mask
decoder, a two-way transformer module, combines image embeddings and prompt tokens to generate the final mask. The
released model, trained on 11 million images and 1 billion high-quality masks, demonstrates impressive zero-shot capability
in handling various conventional natural images. The latest SAM2 (Ravi et al., 2022) introduces a significant evolution over
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Figure 5: The architecture of InfoSAM with Adapter and LoRA

its predecessor by extending its capabilities to the domain of video segmentation. SAM2 replaces the backbone of SAM
with Hiera backbones. And introduces an additional streaming memory component designed for processing video frames.
However, recent studies(Wu et al., 2025; Ji et al., 2024) have revealed that SAM performs poorly in real-world segmentation
tasks across domains such as medicine, agriculture, and remote sensing. Fine-tuning SAM for downstream tasks has been
widely recommended.

B.2. Architectures of Adapter and LoRA

We implement InfoSAM with two of the most widely adopted PEFT methods: Adapter (Chen et al., 2022; Song et al., 2024)
and LoRA (Hu et al., 2022). We fine-tune the image encoder of SAM and SAM2 by incorporating adapters or LoRA, while
fully training the mask decoder. Notably, all training hyperparameters used for SAM and SAM2 remain the same.

The Adapter method introduces lightweight modules into the Transformer architecture by adding small projection layers
between the original layers. Specifically, the adapter module consists of two linear transformations: a down-projection and
an up-projection, with a non-linear activation layer (GELU in our implementation) applied between them. Let the input
feature be X ∈ RB×L×D, where B is the batch size, L is the sequence length, and D is the feature dimension. The adapter
performs the following operations:

z = XWdown (26)

zact = GELU(z) (27)

h = zactWup (28)

where Wdown ∈ RD×r and Wup ∈ Rr×D are learnable weight matrices, and r denotes the bottleneck dimension, typically a
small fraction of D. In our experiments, we set the bottleneck ratio r/D to 0.25. The final output of the adapter is computed
as:

Xout = X+ h (29)

with a residual connection preserving the original information. As illustrated in Fig. 5(a), two adapter modules are
sequentially inserted between the attention and FFN layers.

LoRA (Low-Rank Adaptation) is another parameter-efficient method that integrates lightweight modules into the Transformer
architecture. Similar to the adapter method, LoRA introduces trainable down-projection and up-projection matrices. However,
as shown in Fig. 5(b), instead of being applied between layers, LoRA is added directly to the query (q), key (k), and value
(v) projections within the self-attention mechanism.

Given the input feature X ∈ RB×L×D, the multi-head self-attention mechanism with H heads computes the query, key, and
value as follows:

Qh = XWQ,h, Kh = XWK,h, Vh = XWV,h, h = 1, . . . ,H (30)
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where WQ,h,WK,h,WV,h ∈ RD×Dh , and Dh = D/H is the dimensionality of each attention head.

LoRA introduces low-rank updates to each head’s query, key, and value projections. Specifically:

Q′
h = Qh +∆Qh, K′

h = Kh +∆Kh, V′
h = Vh +∆Vh (31)

where the low-rank updates are defined as:

∆Qh = XWQ,h,downWQ,h,up, ∆Kh = XWK,h,downWK,h,up, ∆Vh = XWV,h,downWV,h,up (32)

Here: WQ,h,down,WK,h,down,WV,h,down ∈ RD×r, WQ,h,up,WK,h,up,WV,h,up ∈ Rr×Dh . Note that the low-rank projec-
tion matrices are head-specific, and r is the bottleneck dimension shared across all heads, determining the rank of the
adaptation. In our experiments, we set r = 4 for all the LoRA-based methods.

C. Tasks and Datasets
We benchmark InfoSAM across eight diverse benchmarks spanning four different domains, following Conv-LoRA (Zhong
et al., 2024). The specific segmentation tasks and corresponding datasets utilized for benchmarking are elaborated below.

C.1. Natural Image

Camouflaged Object Segmentation. The task aims to detect objects hidden within complex or visually cluttered back-
grounds, posing greater challenges compared to traditional object segmentation. We use three camouflaged object detection
datasets: COD10K (Fan et al., 2020a), CHAMELEON (Skurowski et al., 2018), and CAMO (Le et al., 2019). COD10K
contains 3,040 training and 2,026 testing samples, CHAMELEON provides 76 testing images, and CAMO includes 1,000
training and 250 testing images. The combined dataset of COD10K and CAMO training images is used, with 10% randomly
split for validation, and testing is performed on all three datasets.

C.2. Medical Image

Polyp Segmentation. The task of polyp segmentation in gastrointestinal endoscopic images is critical for early colorectal
cancer diagnosis and treatment planning, posing significant challenges due to the considerable variability in polyp shapes
and sizes. We selecte two polyp segmentation datasets: Kvasir (Jha et al., 2020) and CVC-ClinicDB (also known as
CVC-612) (Bernal et al., 2015). The Kvasir dataset consists of 1,000 images, while CVC-ClinicDB contains 612 publicly
accessible images. (Fan et al., 2020b) splits the images into a 9:1 ratio for training and testing. Additionally, 20% of the
training set is randomly selected as a validation set for use during training.

Skin Lesion Segmentation. The task involves identifying different types of skin lesions in medical images, playing a
vital role in the early diagnosis and treatment of skin conditions, particularly skin cancer. However, it remains challenging
due to ambiguous boundaries and color variations. We select the ISIC 2017 dataset (Codella et al., 2018) for skin lesion
segmentation, which contains 2,000 images for training, 150 images for validation, and 600 images for testing.

C.3. Agriculture

Leaf Segmentation. The task focuses on identifying individual plant leaves in agricultural images, supporting automation in
plant disease control and high-quality food production. We use the Leaf Disease Segmentation dataset (Rath, 2023), which
includes 498 images for training and 90 for testing, with 20% of the training set randomly split for validation.

C.4. Remote Sensing

Road Segmentation. This task involves detecting road regions in images or video frames, which is essential for autonomous
driving, traffic analysis, and urban planning. We use the Massachusetts Roads Dataset (Mnih, 2013), containing 1,107
images for training, 13 for validation, and 48 for testing. All the methods are trained for 20 epochs. During validation and
testing, we use 5-point prompts instead of noisy ground-truth box prompts, as the complexity of road structures in remote
sensing images is challenging to capture with box-based prompts.
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D. Additional Experiment Results
Due to space constraints, experimental results that could not be included in the main body are provided here. These include
additional results on more polyp segmentation and camouflaged object segmentation datasets using SAM, as well as the
complete experimental results conducted on SAM2.

D.1. Additional Results with SAM

Polyp Segmentation: As shown in Table 7, InfoSAM exhibits superior performance in polyp segmentation on the Kvasir
and CVC-612 datasets, outperforming both PEFT and distillation-based methods.

Table 7: Additional results of polyp segmentation.

METHOD
Kvasir CVC-612

Sα Eϕ Fw
β Sα Eϕ Fw

β

SAM 83.0± 0.10 88.8± 0.29 79.7± 0.06 87.8± 0.19 94.5± 0.19 85.8± 0.34
decoder-only 90.9± 0.05 95.2± 0.18 89.1± 0.48 92.9± 0.14 97.4± 0.26 89.5± 0.63
BitFit 92.5± 0.12 96.3± 0.20 91.0± 0.37 94.0± 0.39 98.5± 0.21 91.8± 0.81
AdaptFormer 93.3± 0.68 97.0± 0.81 92.8± 0.94 95.2± 0.15 99.0± 0.14 93.8± 0.45
LoRA 93.0± 0.14 96.6± 0.11 91.8± 0.57 94.3± 0.31 98.7± 0.17 92.3± 0.62
Adapter 93.4± 0.12 97.1± 0.15 92.9± 0.13 95.1± 0.51 98.8± 0.40 94.2± 0.33
HQ-SAM 91.1± 0.50 95.5± 0.57 89.9± 0.68 93.2± 0.51 98.0± 0.60 90.9± 1.01
SU-SAM 93.8± 0.02 97.5± 0.06 94.1± 0.45 95.3± 0.42 98.9± 0.39 94.4± 0.65
ConvLoRA-SAM 92.9± 0.13 96.6± 0.28 92.2± 0.46 94.4± 0.05 98.8± 0.14 92.6± 0.63

Logit 93.2± 0.19 96.5± 0.19 92.9± 0.11 95.1± 0.30 99.0± 0.34 93.8± 0.59
PKD 92.2± 0.25 96.0± 0.17 91.9± 0.17 94.2± 0.25 98.5± 0.13 92.3± 0.40
PKT 93.7± 0.41 97.3± 0.53 93.8± 0.43 95.3± 0.19 99.1± 0.18 94.3± 0.36
IBD 91.5± 0.14 95.3± 0.05 89.9± 0.74 93.1± 0.13 97.4± 0.15 90.0± 0.52
VID 93.7± 0.16 97.4± 0.07 93.4± 0.49 95.0± 0.36 98.7± 0.15 93.8± 0.20
SemCKD 92.4± 0.07 96.2± 0.03 91.2± 0.52 93.9± 0.55 98.3± 0.44 91.5± 0.54
ReviewKD 92.4± 0.33 96.4± 0.26 91.6± 0.65 94.0± 0.59 98.4± 0.49 92.2± 1.40
MobileSAM 92.5± 0.12 96.3± 0.14 91.4± 0.15 94.6± 0.27 98.6± 0.12 92.4± 0.77
TinySAM 88.5± 0.31 93.5± 0.24 86.0± 0.79 92.1± 0.42 96.4± 0.59 88.1± 0.79
InfoSAM(Ours) 94.4± 0.12 97.9± 0.09 93.9± 0.09 95.3± 0.09 98.9± 0.09 94.3± 0.15

Camouflaged Object Segmentation: As illustrated in Table 8, InfoSAM achieves state-of-the-art performance in cam-
ouflaged object segmentation across the CHAMELEON, CAMO, and COD10K datasets, surpassing both PEFT and
distillation-based approaches.

Table 8: Additional results of camouflaged object segmentation.

METHOD
CHAMELEON CAMO COD10K

Sα Eϕ Fw
β Sα Eϕ Fw

β Sα Eϕ Fw
β

SAM 80.4± 0.14 88.9± 0.10 74.5± 0.13 79.7± 0.02 88.8± 0.09 79.6± 0.01 83.5± 0.02 92.5± 0.03 79.2± 0.01
decoder-only 87.0± 0.20 93.5± 0.41 80.0± 0.74 84.9± 0.38 92.7± 0.34 81.8± 0.33 87.1± 0.10 94.4± 0.11 79.9± 0.13
BitFit 89.6± 0.47 96.1± 0.33 84.2± 0.77 87.5± 0.13 94.5± 0.08 85.3± 0.48 89.2± 0.31 95.9± 0.21 83.6± 0.59
AdaptFormer 92.2± 0.13 97.6± 0.30 89.4± 0.55 87.9± 0.10 94.8± 0.21 86.2± 0.19 90.1± 0.16 96.5± 0.10 85.8± 0.55
LoRA 90.4± 0.48 96.5± 0.25 85.5± 0.59 87.7± 0.59 94.6± 0.50 85.1± 0.64 89.8± 0.17 96.3± 0.06 84.9± 0.40
Adapter 92.5± 0.10 97.9± 0.11 90.1± 0.39 88.2± 0.44 94.8± 0.34 86.7± 0.92 90.2± 0.25 96.5± 0.19 86.0± 0.58
HQ-SAM 87.0± 0.34 93.3± 0.54 79.7± 0.07 85.1± 0.10 92.6± 0.10 81.0± 0.61 87.3± 0.14 94.5± 0.25 80.0± 0.49
SU-SAM 92.3± 0.28 97.9± 0.27 90.0± 0.23 88.3± 0.21 95.0± 0.22 86.2± 0.59 90.2± 0.15 96.5± 0.09 86.0± 0.45
ConvLoRA-SAM 90.6± 0.34 96.6± 0.19 86.0± 0.71 87.5± 0.39 94.5± 0.17 85.4± 0.41 89.8± 0.23 96.2± 0.21 84.9± 0.61

Logit 91.9± 0.47 97.4± 0.46 89.2± 0.55 88.4± 0.08 94.9± 0.05 87.1± 0.22 90.4± 0.12 96.6± 0.10 86.1± 0.31
PKD 90.7± 0.40 96.2± 0.64 87.5± 1.10 87.0± 0.43 94.1± 0.23 84.3± 0.97 89.7± 0.17 96.3± 0.16 85.4± 0.43
PKT 92.2± 0.40 97.7± 0.50 90.0± 0.73 87.8± 0.40 94.5± 0.35 86.2± 0.46 90.3± 0.16 96.6± 0.10 86.2± 0.50
IBD 86.6± 0.29 93.0± 0.60 79.5± 0.77 85.2± 0.47 92.6± 0.35 82.4± 0.31 87.9± 0.13 94.8± 0.18 81.4± 0.37
VID 92.2± 0.18 97.9± 0.13 89.8± 0.40 87.9± 0.22 94.8± 0.34 86.3± 0.32 90.3± 0.16 96.5± 0.16 86.2± 0.10
SemCKD 88.8± 0.27 95.1± 0.29 83.4± 0.60 86.2± 0.16 93.5± 0.21 82.8± 1.54 88.5± 0.31 95.6± 0.18 83.1± 0.34
ReviewKD 90.3± 0.30 96.5± 0.19 85.6± 0.02 86.7± 0.07 94.0± 0.09 84.6± 0.63 89.4± 0.23 96.0± 0.10 84.3± 0.42
MobileSAM 91.4± 0.32 96.7± 0.21 88.6± 0.41 87.1± 0.36 94.1± 0.27 85.1± 0.09 90.1± 0.12 96.6± 0.08 86.1± 0.29
TinySAM 84.1± 0.09 90.3± 0.61 76.6± 0.30 83.7± 0.39 91.6± 0.31 81.1± 0.35 86.3± 0.39 94.0± 0.11 80.0± 0.47
InfoSAM(Ours) 92.6± 0.14 98.0± 0.25 89.6± 0.22 88.5± 0.05 95.1± 0.05 87.1± 0.09 90.5± 0.05 96.7± 0.09 86.2± 0.22
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D.2. Additional Results with SAM2

The complete experimental results of InfoSAM with the SAM2 backbone are provided in Table 9 and Table 10. Maintaining
the strong performance of SAM, InfoSAM achieves superior results with SAM2.

Table 9: Complete comparison results of PEFT methods with SAM2 across different domains.

METHOD
MEDICAL AGRICULTURE REMOTE SENSING

Kvasir Leaf Road
Sα Eϕ Fω

β IoU Dice IoU Dice

SAM2 87.1± 0.12 90.2± 0.06 85.2± 0.20 42.7± 0.32 53.3± 0.32 6.9± 0.13 12.4± 0.37
decoder-only 93.2± 0.07 96.6± 0.05 92.1± 0.41 71.8± 0.58 82.2± 0.58 48.5± 0.47 64.7± 0.49

BitFit 93.8± 0.09 97.0± 0.06 93.2± 0.17 75.4± 0.29 85.2± 0.26 59.2± 0.26 74.0± 0.25
AdaptFormer 93.7± 0.19 97.2± 0.42 93.3± 0.38 73.6± 1.10 83.7± 0.78 59.9± 0.35 74.6± 0.28
LoRA 93.7± 0.10 97.0± 0.07 93.2± 0.37 75.9± 0.40 85.5± 0.36 60.8± 0.32 75.3± 0.29
Adapter 94.4± 0.06 97.5± 0.09 93.8± 0.03 76.8± 0.56 86.2± 0.50 60.9± 0.14 75.4± 0.11

LoRA+Ours 94.0± 0.09 97.0± 0.08 93.4± 0.25 76.1± 0.38 85.7± 0.31 60.9± 0.05 75.5± 0.08
Adapter+Ours 94.5± 0.17 97.4± 0.16 94.0± 0.16 77.3± 0.14 86.6± 0.08 61.3± 0.05 75.8± 0.05

Table 10: Complete comparison results of distillation methods with SAM2 across various domains.

METHOD
MEDICAL AGRICULTURE REMOTE SENSING

Kvasir Leaf Road
Sα Eϕ Fw

β IoU Dice IoU Dice

Teacher 87.1± 0.12 90.2± 0.06 85.2± 0.20 42.7± 0.32 53.3± 0.32 6.9± 0.13 12.4± 0.37
Student 94.4± 0.06 97.5± 0.09 93.8± 0.03 76.8± 0.56 86.2± 0.50 60.9± 0.14 75.4± 0.11

PKT 94.0± 0.25 97.2± 0.10 93.7± 0.40 74.8± 0.14 84.7± 0.20 57.3± 0.07 72.5± 0.04
VID 94.1± 0.47 97.2± 0.45 93.5± 0.45 77.2± 0.37 86.4± 0.26 61.1± 0.38 75.6± 0.30
ReviewKD 93.4± 0.10 97.0± 0.10 92.7± 0.34 72.7± 0.37 83.0± 0.36 55.9± 0.50 71.3± 0.53

MobileSAM 93.3± 0.15 96.7± 0.06 92.5± 0.69 74.1± 0.35 84.1± 0.18 52.3± 0.46 68.3± 0.38
TinySAM 89.4± 0.10 93.3± 0.32 86.3± 0.20 45.2± 0.76 56.1± 0.63 23.9± 2.61 36.5± 3.22
InfoSAM2(Ours) 94.5± 0.17 97.4± 0.16 94.0± 0.16 77.3± 0.14 86.6± 0.08 61.3± 0.05 75.8± 0.05

E. Hyper-parameter Sensitivity Analysis
E.1. Analysis of the λ1 and λ2 in Linfo

In Fig. 6, we conduct a key hyper-parameter sensitivity study of λ1 and λ2 in balancing relation compression loss Lr and
relation distillation loss Ld across three typical domains. Each sub-figure shows the heat map under different hyper-parameter
settings, reflecting the change of loss function. It is recommended to view it in color display for best results. According to
the accuracy heat map, we set λ1 = 1, λ2 = 0.5.
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Figure 6: Hyper-parameter sensitivity study of λ1 and λ2 in balancing Lr and Ld, with Kvasir, Leaf, and Road datasets
(Best viewed in color).
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E.2. Analysis of the α Parameter in Matrix-based Rényi’s Entropy

In this paper, we set α = 2 to compute matrix-based Rényi’s α-entropy via the Frobenius norm. The core reasons for
choosing α = 2 in matrix-based Rényi’s α-entropy are as follows: (i) The primary practical motivations are computational
efficiency and alignment with prior works. By setting α = 2, we enable direct computation of matrix-based Rényi entropy
through Frobenius norm operations (see Eq.(11)), eliminating the necessity for eigenvalue decomposition. This optimization
reduces time complexity from O(n3) to O(n2) (n represents the sample numbers) (Dong et al., 2023), substantially reducing
computational costs while maintaining theoretical rigor, particularly advantageous for high-dimensional data analysis (Yu
et al., 2019). Additionally, prior research has successfully applied Rényi entropy with α = 2 in segmentation tasks (Miles
et al., 2023), to align with the established practices in this field, we adopt α = 2. (ii) For theoretical reasons, if the
application requires emphasis on tails of the distribution (rare events) or multiple modalities (distributions with multiple
peaks), α should be less than 2 and possibly approach to 1 from above. If the goal is to highlight the dominant mode (the
most probable region), α should be greater than 2 to emphasize central tendencies. α = 2 provides neutral weighting (Yu
et al., 2019). Moreover, the Frobenius norm’s differentiable and strongly convex properties guarantee rapid convergence in
gradient-based optimization algorithms (Boyd, 2004).

Furthermore, in Table 11, we conduct an analysis to evaluate the performance of different α values (α = 1.01, 2, 3).
Following with prior work (Yu et al., 2019), we set α = 1.01 to asymptotically approach Shannon entropy. The results
indicate that α = 2 achieves the highest verification accuracy while reducing computational overhead by an order of
magnitude. This computational gain stems from its exclusive reliance on Frobenius norm operations, whereas α = 1.01 or 3
require eigenvalue decompositions, which are computationally more expensive.

Table 11: Experiments of different α values in matrix-based Rényi’s entropy.

METHOD
AGRICULTURE REMOTE SENSING COMPUTATION TIME

IoU (Leaf) IoU (Road) ms

α = 1.01 75.3± 0.31 60.6± 0.12 32.1± 30.7
α = 2 75.6± 0.27 61.4± 0.30 1.2± 0.3
α = 3 75.2± 0.30 61.2± 0.06 35.4± 31.2

F. Deep Dive into the Relation Model
F.1. Understanding the Domain-invariant Information Encoded by the Relation Model

Many recent studies leverage SAM’s pre-trained capabilities for downstream tasks by fine-tuning. However, when the
fine-tuning data distribution is narrow, the model tends to overfit task-specific local features (Wang et al., 2024). We argue
that this is mainly because task-specific optimizations will cover or suppress domain-invariant features learned during
pre-training.

To substantiate this assumption, we have conducted experiments in Section 5.4 to illustrate that the extracted relation works
(see Table 4) and is domain-invariant (see Table 6). In Table 4, the extracted relations boost other distillation methods (e.g.,
TinySAM) by 1.7%–5.2% IoU, indicating the preserved information’s effectiveness. In Table 6, applying the RM trained on
one domain to a completely different domain still preserves its effectiveness, suggesting that these transferable relations are
domain-invariant and beneficial for fine-tuning.

We further explore the nature of domain-invariant information. We employ relations to represent domain-invariant informa-
tion, which serves as an implicit yet generalizable characterization that may inherently encode various domain-agnostic
properties. Here, we showcase and evaluate structural edge information using the Boundary F1 Score (BFS) (Zhang et al.,
2023b). As shown in Fig. 7, InfoSAM with the relation module outperforms other fine-tuning baselines in boundary
preservation, demonstrating that this implicit relational encoding effectively extracts richer structural edge features.
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Figure 7: Boundary quality measured by the F1-score at various thresholds (0, 1, 2, and 3 pixels) on the Leaf dataset. The
thresholds represent the allowable pixel distance: if the predicted boundary is within the threshold distance from the ground
truth boundary, it is regarded as correct. A larger threshold provides a more tolerant evaluation.

Additionally, we visualize the relation maps extracted from the teacher and student models at various stages of training
InfoSAM, ranging from the early to late epochs.

Teacher

Student

Early Epoch Middle Epoch Late Epoch Image

GT

Early Epoch Middle Epoch Late Epoch Image

GT

Figure 8: Relation maps evolve from early to late epochs. During training, the relation module gradually captures key
information from the pre-trained teacher model, leading to improved performance of the student model.

F.2. Effectiveness of the Proposed Loss for Relation Model Learning

This section investigates the effectiveness of the proposed loss Linfo in guiding the relation model to learn generalizable
features while avoiding trivial solutions. As shown in Eq. (11) and Eq. (12), Linfo includes regularization terms such as
log2 ∥GT

imr∥2F , log2 ∥GT
r ∥2F , and log2 ∥GS

r ∥2F , which promote feature diversity and prevent it from converging to trivial
solutions.

To further verify the effectiveness of these regularization terms, we conduct an ablation study to assess their impact both
qualitatively (through the visualization of relation maps) and quantitatively (through performance on downstream tasks) in
Fig. 9 and Table. 12, respectively: (i) For visualization performance, we visualize the relation maps and their corresponding
statistical distributions evolving from early to late epochs. As shown in Fig. 9, without the regularization terms, the
distribution of the relation maps becomes increasingly narrow during training, and the domain-invariant information
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Table 12: Ablation study of regularization terms (RT) in Linfo.

METHOD
AGRICULTURE REMOTE SENSING

IoU (Leaf) IoU (Road)

w/o RT 74.6± 0.12 59.6± 0.69
w RT 75.6± 0.27 61.4± 0.30

Table 13: Experiments of different Relation Model architectures. ”Attn-n” represents the number of attention layers for RM.

METHOD
AGRICULTURE REMOTE SENSING

IoU (Leaf) IoU (Road)

Dot Product 75.2± 0.35 61.0± 0.04
Linear 74.9± 0.51 59.3± 0.58
Attn-5 75.4± 0.22 61.4± 0.12
Attn-3 75.4± 0.40 61.7± 0.06
Attn-1 (ours) 75.6± 0.27 61.4± 0.30

captured by the relation maps becomes less distinct. In contrast, the RM trained with regularization terms maintains a broad
relation distribution and a more representative relation map. (ii) For downstream performance shown in Table. 12, the
regularization terms benefit our method by improving performance, as demonstrated by a 1.0% and 1.8% increase in IoU on
the Leaf and Road datasets, respectively. Both results indicate that the proposed loss with regularization terms effectively
extracts domain-invariant features, rather than domain-specific noise, thereby enhancing downstream performance and
alleviating the problem of trivial solutions.
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Figure 9: Evolution of relation maps and their statistical distributions over epochs, without and with the regularization term.

F.3. Exploring the Relation Model architectures

We conduct an analysis to compare different model architectures and explore the number of attention layers for relation
module (RM). We compare direct dot product, a linear layer, multiple attention layers, and our proposed RM across multiple
experiments on two distinct domains.

The experimental results show that: (i) attention-based RM outperforms other other architectures designs. This indicates that
attention mechanism effectively assess the correlations between the input features (i.e., image and mask features), thereby
adaptively filtering and enhancing the useful information (e.g., edge details) while reducing redundancy. (ii) If we stack an

22



InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective

appropriate number of attention layers (e.g., 3 layers) in the RM can be beneficial for capturing key information. However,
stacking too many (e.g., five layers) increases training difficulty and risks overfitting. In a nutshell, the current RM design is
a trade-off between performance and computational overhead, and it effectively captures the relationships between image
and mask features.

G. Visualization Results
We present visualization results of mask predictions across various datasets using different PEFT methods for SAM (SAM,
HQSAM, SU-SAM, ConvLoRA-SAM, and InfoSAM). These results further demonstrate the superiority of our proposed
InfoSAM.

GT SAM HQSAM ConvLoRA-SAMSU-SAM InfoSAMRGB Image

Figure 10: Visualization results on camouflaged object segmentation.

GT SAM HQSAM ConvLoRA-SAMSU-SAM InfoSAMRGB Image

Figure 11: Visualization results on leaf disease segmentation.

GT SAM HQSAM ConvLoRA-SAMSU-SAM InfoSAMRGB Image

Figure 12: Visualization results on remote sensing road segmentation.
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